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Abstract

With the growing complexity of software and its importance in vital parts
of our infrastructure testing software becomes more and more vital. For this
reason testing should be as simple as possible. In this thesis we try to design
and implement a testing framework for Curry that is easy to use, provides
all the functionalities of existing frameworks, and is readily extendable if new
frameworks with additional functionality arise. To create this new framework,
we will look at two existing ones for Curry, CurryTest and EasyCheck. We
will analyse these two frameworks to �nd their assets and shortcomings and
use both EasyCheck and CurryTest to implement our new framework.
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1. Introduction

In this �rst chapter we will look at the motivations and goals of this thesis and
�nally give a short overview over the structure and content of the remaining
chapters.

1.1. Motivation

In today's world software is all around us and more importantly controls
many aspects of our lives. Be it as operating system on our smartphones
or the controlling software of a nuclear reactor, we interact and depend on
software as part of our lifestyle. Because software plays such a vital role in
our society it is important that many programs work as reliable as possible.
There are many reasons why software has to work reliable. Let us take a look
at the website of an online shop. It might not be a big problem for a customer
if the website does not work properly, he just might get annoyed and buys
at another store. For the owner of the website, on the other hand, it might
be a big problem. Because, if the site does not work properly, he will not
sell anything. Thus, �nancial reasons are one argument for reliable software.
A prominent example for a big �nancial loss due to software errors is the
explosion of the Ariane 5 in 1996, which cost was valued at $500 million[12].
Another reason for tests is safety. Since a malfunction in many software

system would probably cost lives. Examples for these kind of safety critical
system are the autopilot of an air plane or the coming autonomous driving
cars.
For programmers the creation of tests has to be as simple as possible, as

they are then more inclined to write tests. If writing or executing tests is
hard, chances are that nobody writes any tests or the tests get not executed
as often as necessary.
The idea behind this thesis is to create a new testing framework for Curry,
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1. Introduction

with a uniform syntax and a way to automatically execute all written tests
in a Curry module, that combines the features of existing frameworks.

1.2. Goal

As mentioned before, one of the goals is, to create a simple syntax for writing
tests. Since tests basically boil down to comparing two values, a trivial way to
write them would be similar to func1 == func2. Accordingly, the objective
is to provide a small set of operators that allow us to write the tests in the
same way. Listing 1.1 shows a simple test example using this kind of syntax.

Listing 1.1: simple test

lengthOfEmptyList = length [] -==- 0

EasyCheck provides the ability to de�ne properties and test these. Since
we want our syntax to be as simple as possible, we want to use the same
operators for de�ning properties as well. Listing 1.2 shows an example of a
property being de�ned using (-==-).

Listing 1.2: simple property test

reversePreservesLength = length . reverse -==- length

Besides providing the possibility to de�ne properties by using the form
shown in Listing 1.2, we also want to provide the alternative way shown in
Listing 1.3.

Listing 1.3: simple property test - alternative syntax

reversePreservesLength xs = length (reverse xs) -==- length xs

In chapter 4 we will take a more detailed look at the syntax used in
this framework and also at the semantics, especially when dealing with non-
determinism.
Besides the syntax, we want to take a look at where we write our tests.

Oftentimes tests are written in separated modules like unit tests[2]. Splitting
tests and functions has some disadvantages. Firstly, if a test fails, there is no
direct way of linking the failed test to the tested function, more speci�cally
the exact location (�le, line), except if we hard code this information into
the test. Secondly, a test does not only provide a good way of ensuring the

2



1.2. Goal

quality of the tested function, it can also provide a good way of documenting
a function. A simple example of this would be the addition of numbers. One
property such an implementation should probably ful�l is commutativity, so
it would be sensible to write a corresponding test. If we write our tests in a
di�erent module than our function, we would have to write a comment for
our function detailing this property to properly document it. But then we
have a new problem, since we need to keep track of a comment in one �le
(our program) that actually describes something in a di�erent module (our
test). Accordingly, one of our goals is to support the declaration of tests in
the same module as the functions we want to test. This way, if we write our
tests next to the function itself, we not only add additional documentation
of the tested function, but also provide a better way of linking the test with
the function. When a function fails, we can provide the �le and line number
of the failed test and the spacial locality allows us to review the test and the
function directly.
Since we want to be able to write our tests in the same �le as the functions

we test, we want our tests to be valid Curry code. We then do not have to
remove the tests before compiling the program, and we also have the bene�t
of the same syntax highlighting and type checking as everything else.
The last requirement we want to achieve is automatic test detection and

execution. Because the tests are mixed with the main program, one goal
is providing a program that �nds and executes all tests in a module. Fur-
thermore, it would be desirable that we do not need to export our tests. If
we would need to export the tests, they would needlessly clutter the mod-
ules interface and hide the module's actually important interface functions.
Moreover, when compiling the program, a good compiler could do a dead code
analysis and remove all tests as they are neither locally used nor exported.
To summarize, the created framework should realize the following goals:

• simple syntax

• tests are valid Curry code

• provide all features of existing frameworks (EasyCheck and CurryTest)

• tests de�ned inside the same module

• automatic test detection and execution

3



1. Introduction

1.3. Structure

The rest of this thesis is structured as follows. In chapter 2 and chapter 3
we will look at some preliminaries of this thesis. More precisely, we take a
quick look at functional and logic programming (section 2.1 and section 2.2,
respectively). We then provide a short introduction to Curry (section 2.3),
as Curry is the language for which we provide a testing framework. In sec-
tion 2.4 we glance atAbstractCurry, which provides meta-programming capa-
bilities for Curry and is used extensively in the implementation. In chapter 3
we go through two existing testing frameworks for Curry, namely CurryTest
(section 3.1) and EasyCheck (section 3.2). As our framework tries to com-
bine and expand these two frameworks, we take a more detailed look at each
framework's syntax and capabilities.
After handling the preliminaries in chapter 2 and chapter 3, we will then

discuss the new framework CurryCheck in chapter 4 and chapter 5. Firstly we
examine the provided syntax and semantics of CurryCheck in chapter 4 and
then review the implementations as well as some modi�cations to EasyCheck
in chapter 5.
Lastly we discuss some problems that remain in CurryCheck and how to

resolve them in future versions in chapter 6 and �nally �nish with a short
summary of which goals have been achieved in chapter 7.
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2. Preliminaries

In this chapter we will look at the programming language Curry, its underlying
concepts and introduce AbstractCurry, which provides a means to do meta-
programming with Curry programs.
As Curry is a multi-paradigm language, �rst o� we will quickly summarize

these concepts, i.e. functional (section 2.1) and logic (section 2.2) program-
ming. After that we will introduce the reader to Curry's non-determinism
(section 3.1), as we have to deal with it semantically, when providing a test
framework and at last say a few words about AbstractCurry. Readers already
pro�cient with these concepts can safely skip ahead to chapter 3.

2.1. Functional Programming

Functional programming is one of the two main concepts underlying Curry.
Functional programs are declarative programs, which means that a program
is a set of function de�nitions. The programmer concentrates more on how
the program should do its task on a logical layer and not so much in which
order basic instruction are executed. Thus, a functional language abstracts
from the concept of memory. In the rest of the document we expect the
reader to be familiar with functional programming. Since Curry is heavily
in�uenced by Haskell and many Haskell programs are indeed also valid Curry
programs, we especially expect the reader to be seasoned in Haskell and its
syntax.

2.2. Logic Programming

The second important paradigm behind Curry is logic programming. Logic
programming is a declarative paradigm as well, but in contrast to functional
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2. Preliminaries

programming logic programming does not only provide for functions but re-
lations. A logic program is a set of facts and relations. The compiler has
to provide a built-in search as a way to test these relations for possible so-
lutions. This built-in search enables us to use many relations in multiple
directions. The reader is expected to become adept with logic programming
and its principal on his or her own, if not already familiar with it.

2.3. Curry

As mentioned in section 2.1, we will assume knowledge and familiarity with
functional and logic programming and especially Haskell and its syntax. Con-
cepts like algebraic data types, higher-order functions and pattern matching
should be well understood, as we will only look at one feature Curry inte-
grates from logic programming: non-determinism. The reason we will cover
non-determinism is that our test framework has to deal with non-deterministic
functions. So in order to test non-deterministic functions, we should under-
stand what they are and how they work. All programs and examples in this
document are compiled or executed with KiCS2 version 0.4.0.

2.3.1. Non-determinism in Curry

Just as in Haskell, a Curry function is a set of rules, but the evaluation of
these rules di�ers a little bit, as we will see. Let us write a simple function
that tests if a list is empty.

isEmpty :: [a] -> Bool

isEmpty [] = True

isEmpty (x:xs) = False

The �rst rule matches the empty list and thus returns True. The second
rule, on the other hand, matches a non-empty list and consequently returns
False. In Haskell we would probably rewrite that function de�nition to use
the wild-card _, as we do not need the values of x or xs. In fact, if the second
rule is tried, we know that the �rst one did not match and as such, the list
has to be non-empty.

isEmpty ' :: [a] -> Bool

isEmpty ' [] = True

6



2.3. Curry

isEmpty ' _ = False

Although this is perfectly valid Curry code, if we execute this version in
KiCS2, we do not get the expected result.

> isEmpty ' []

True

False

Instead of just True, we get True as well as False as a result of isEmpty'
[]. This is a result of Curry testing all rules of a function de�nition, regardless
of the other ones matching or not. In the case of isEmpty' [] both rules
match, so we get both results.

Even though we have to be careful with overlapping rules in Curry, we can
use them to purposely introduce non-determinism. A very simple example of
a non-deterministic function is the de�nition of a coin, which can be either
heads or tails (or in this case 0 or 1). Using overlapping rules we can de�ne
a coin the following way.

coin1 :: Int

coin1 = 1

coin1 = 0

Since non-determinism is a key feature of Curry, Curry also provides the
(?) - operator to introduce non-determinism into programs. The de�nition
is shown in Listing 2.1. The operator is de�ned using two rules. The �rst one
ignores its second argument and returns the �rst. The second rule ignores
the �rst argument and returns the second. As both rules will always match,
the result is the non-deterministic return of one of the two arguments.

Listing 2.1: de�nition of (?)

(?) :: a -> a -> a

x ? _ = x

_ ? y = y

Using (?) we can rewrite the de�nition of coin using a single rule. In this
way we do not have to use overlapping rules to introduce non-determinism
into our programs anymore.

coin2 :: Int

coin2 = 1 ? 0

7



2. Preliminaries

With the help of (?), we can transform a list into a non-deterministic
value selecting one of the lists elements. The return value is either the �rst
element or any value of the remaining elements. The following listing shows
the implementation of anyOf using the (?) - operator.

anyOf :: [a] -> a

anyOf (x:xs) = x ? anyOf xs

We can simplify anyOf's de�nition using the higher-order-function foldr1.

anyOf :: [a] -> a

anyOf = foldr1 (?)

2.4. AbstractCurry

To realize most of the goals (section 1.2), we mainly use AbstractCurry. Ab-
stractCurry is part of the standard Curry library and allows meta program-
ming in Curry programs. We will not cover AbstractCurry in depth in this
section, but rather look at some small examples to convey a basic understand-
ing of AbstractCurry. We will write three small functions that are used in
the �nal program and the data types needed by these functions.
The �rst interesting question is how to obtain the AbstractCurry represen-

tation of a program. The Curry library provides a function called readCurry

(Listing 2.2). The functions parameter is the name of the module it should
parse.

Listing 2.2: readCurry signature

readCurry :: String -> IO CurryProg

readCurry returns an abstract representation of the parsed module. The
de�nition of the data type CurryProg is shown in Listing 2.3. The type
contains the module's name, a list of imported modules, the data type and
function declarations and at last the operator precedence declarations.

Listing 2.3: de�nition of CurryProg

type MName = String

data CurryProg

= CurryProg MName -- module name

[MName] -- imports
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2.4. AbstractCurry

[CTypeDecl] -- type declarations

[CFuncDecl] -- function declarations

[COpDecl] -- operator precedence declarations

This abstract representation enables us to transform programs. But if we
do modify the code, we want to be able to use the new version. We have to
generate a normal Curry �le, as AbstractCurry cannot be directly used by the
compiler. To generate the Curry code, we use showCProg :: CurryProg

-> String from module PrettyAbstract. As a module has to be saved as
ModuleName.curry, if we want to be able to import it later, it is a good idea
to directly save it in this way. Since there is no library function that does
this way of saving for us, we have to get our own hands dirty. First we need
to get the name of the module from its abstract representation. Listing 2.4
shows a simple function to obtain the name. We simply match for the �rst
argument of CurryProg and return the value.

Listing 2.4: getModuleName

-- get a module 's name

getModuleName :: CurryProg -> String

getModuleName (CurryProg modname _ _ _ _) = modname

For saving we need to use three IO functions, namely openFile, hPutStr

and hClose. The signatures of these three functions are listed in List-
ing 2.5. As typical for �le I/O we have to obtain a Handle by opening the
�le (openFile). For this we can use three modes: ReadMode, WriteMode and
AppendMode. We can than write to the open Handle (hPutStr) and when we
are done, we have to close the Handle to conclude the operation (hClose).

Listing 2.5: openFile hPutStr hClose signatures

openFile :: String -> IOMode -> IO Handle

hPutStr :: Handle -> String -> IO ()

hClose :: Handle -> IO ()

Putting all this together, we can now write saveCurryCode (Listing 2.6),
a function that takes an abstract representation of a Curry module and saves
it as a normal Curry program under 'ModuleName'.curry.

Listing 2.6: saveCurryCode de�nition

saveCurryCode :: CurryProg -> IO ()
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2. Preliminaries

saveCurryCode p = do

file <- openFile (getModuleName p ++ ".curry") WriteMode

hPutStr file $ showCProg p

hClose file

Now that we can obtain a program's AbstractCurry representation and
save it as a normal Curry program again, we can think about modifying the
code. One thing we will have to do later on is changing a functions visibility
to public, i.e. export it. So let us look at how to do this. First we need
to examine the data type representing a function. This data type is called
CFuncDecl.

Listing 2.7: de�nition of CFuncDecl

data CFuncDecl

= CFunc QName Arity CVisibility CTypeExpr [CRule]

| CmtFunc String QName Arity CVisibility CTypeExpr [CRule]

The di�erence between the two constructors CFunc and CmtFunc of
CFuncDecl is that CmtFunc has an additional parameter (the �rst) to include
a comment. The parameter of type CVisibility is the functions visibility
level. There are only two di�erent levels: Public (exported) and Private.
Since we want to make the function public, we simply have to pattern match
for the di�erent arguments, whereat we can ignore the original visibility (_),
as we do not care about the original visibility. We then yield a new function
using the same constructor and arguments, except for the third (comment not
counting) one set to Public (Listing 2.8). Thusly, we created a new version
of the function that is exported.

Listing 2.8: makePublic

makePublic :: CFuncDecl -> CFuncDecl

makePublic (CmtFunc c name arity _ typeExpr rules)

= CmtFunc c name arity Public typeExpr rules

makePublic (CFunc name arity _ typeExpr rules)

= CFunc name arity Public typeExpr rules

10



3. CurryTest and EasyCheck

This chapter will introduce two existing frameworks to test Curry programs.
These frameworks are CurryTest [2] and EasyCheck [11][3][8]. We will examine
what functionalities each of these test suites provide and how to use them.
The �rst framework we look at is CurryTest.

3.1. CurryTest

CurryTest is part of both KiCS2 as well as PACKS1. Both compiler's test
suites are currently exclusively using CurryTest. CurryTest consists of the
Curry module Assertion and the tool currytest. The currytest program is
used to automatically execute all tests in a given module. The Assertion
module provides the following six functions to de�ne tests.

assertTrue :: String -> Bool -> Assertion ()

assertEqual :: String -> a -> a -> Assertion a

assertValues :: String -> a -> [a] -> Assertion a

assertSolutions :: String -> (a->Success) -> [a] -> Assertion a

assertIO :: String -> IO a -> a -> Assertion a

assertEqualIO :: String -> IO a -> IO a -> Assertion a

To de�ne a test one has to import the module Assertion and then fully
apply one of the above functions. But to make the tests executable by the
currytest program, each test has to be exported as well. For this reason one
would normally de�ne tests with CurryTest in a separate module from the
functions that are tested. The module containing the tests than simply ex-
ports all its top level functions. Through this separation the normal modules
can still export only the relevant functions, without the tests cluttering the
modules' interfaces.

1Portland Aachen Kiel Curry System
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3. CurryTest and EasyCheck

Next let us look at the di�erent functions provided by Assertion. One thing
all six of them have in common is the �rst argument of type String. This
�rst argument is a message that is displayed when the test is executed. In the
rest of this section we will ignore this argument when talking about the test
functions. Accordingly, we will refer to the �rst argument after the String -
argument as the �rst of the function and so on.
The simplest function to de�ne a test with is assertTrue. assertTrue

takes only one argument of type Bool. The test fails if the argument evaluates
to False. So let us test if our function isEmpty is correct for the empty list.

testEmptyList = assertTrue "[] is empty" (isEmpty [])

The next function is assertEqual and it expects two arguments. The test
is passed if both arguments evaluate to the same value. A common use case
is to test a set of inputs against known results of a function. The example
code for assertEqual shows a small test set for reverse. It is customary to
use multiple input values.

testReverse1 = assertEqual "reverse1" (reverse []) []

testReverse2 = assertEqual "reverse2" (reverse [1]) [1]

testReverse3 = assertEqual "reverse3" (reverse [1,2,3]) [3,2,1]

assertEqual and assertTrue can be expressed via one another. All
tests using assertTrue "" boolean can be rewritten as assertEqual ""

boolean True. assertEqual "" val1 val2, on the other hand, can be
rewritten as assertTrue "" (val1 == val2.
All test functions used so far expect a deterministic result and generate

an error if the tested functions are non-deterministic. The next two test
functions work with non-determinism. The �rst one up is assertValues. It
takes a
(non-)deterministic value as �rst and a list of values as second argument.
Thereby, the list is interpreted as the multi-set of values the �rst argument
should produce. This means [True, False, True] and [True, False] are
two di�erent values. [True, False] and [False, True], on the other hand,
are interchangeable. So, to test our coin function we can use the following
two variations.

testCoin1 = assertValues "coin1" coin [0, 1]

testCoin2 = assertValues "coin2" coin [1, 0]

12



3.1. CurryTest

As deterministic functions are just a special case of non-deterministic func-
tions, all tests using assertTrue or assertEqual can be rewritten using
assertValues. Since we have already shown that assertTrue and assert-

Equal are interchangeable, we only show this for one of them. assertTrue

"" boolean can also be expressed as assertValues "" boolean [True].
The second test function to deal with non-determinism is assertSolutions.

This function deals with constraint abstractions and passes if the constraint
abstraction (�rst argument) yields the multi-set (second argument) as solu-
tion. The online guide to CurryTest lists the following example.

testPrefix = assertSolutions "prefix" (\x -> x++_ =:= [1 ,2])

[[] ,[1] ,[1 ,2]]

The remaining two functions are designed to test IO-functions. Although,
it is good practise to avoid the IO-monad as long as possible in the code,
at some point we probably have to use it. assertIO expects one IO-action
and the return value of this operation. The test passes if the IO-operation's
return value matches the second argument of assertIO. Possible changes to
the World, which the IO-action might introduce, are not considered, as it
would be impossible.
As usage example of assertIO we will use the function nth.

nth :: String -> Int -> IO String

nth filename n = do

content <- readFile filename

let lines = splitOn "\n" content

return $ lines !! n

nth expects a �lename and a positive integer and returns the n-th line in
the �le. To test it we have two choices: we can either provide a test �le as
part of our test suite or we can create a temporary �le on the �y. wrapNth

demonstrates a very rudimentary version of the second option, creating the
�le on the �y. The wrapNth function creates a new �le �tmp.txt� with six
lines containing the strings �1� through �6�. It then calls nth, deletes the �le
and yields the result of the call to nth.

wrapNth :: IO String

wrapNth = do

writeFile "tmp.txt" "1\n2\n3\n4\n5\n6\n"

ret <- nth "tmp.txt" 5

system "rm -f tmp.txt"
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return ret

Our test can now be written as follows.

testNth = assertIO "nth" wrapNth "5"

The �nal test function is assertEqualIO. In contrast to assertIO it ex-
pects two IO-actions, but also just compares the return values. Every test
with assertIO can be written as assertEqualIO test by simply wrapping
the second argument in a return statement.
The �nal test module would look like the following:

module TestModule where

import Assertion

import ModuleToTest

import HelperModules

-- ...

-- tests and helpers

-- ...

The test module simply exports all contained functions because the tests
have to be exported anyway. We then import the Assertion module and all
other modules containing functions we want to test or otherwise need to write
our test. For example, to write our wrapper for nth (wrapNth) we would need
to import the system function from the module System. We then write our
tests and helper functions as shown in the examples above.
To execute the tests, currytest has to be called with the module name that

contains the tests. So in our example we would call currytest TestModule.

$ currytest TestModule

[...]

============================================================

Testing module "TestList"...

OK: [] is empty

OK: reverse1

OK: reverse2

OK: reverse3

OK: coin1

OK: coin2

OK: prefix

OK: nth
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FAILURE of nth: IO assertion not satisfied:

Computed answer: "6"

Expected answer: "5"

FAILURE occurred in some assertions!

FAILURE IN SOME TEST OCCURRED !!!

FAILED TEST MODULES: TestModule

All tests successfully passed.

============================================================

As output the tool lists the tests (the String argument of the asserts)
and the status of the tests. If a test fails, the tool also states details as to why
the test failed. In our example the last test failed. The output indicates that
nth yielded 6, also we expected it to compute 5. A look at our de�nition of
nth reveals that we forgot to subtract 1 from n as the �rst element of lines
has index 0. When we run the corrected version the output changes to this:

$ currytest TestModule

[...]

OK: prefix

OK: nth

All tests successfully passed.

Furthermore, the currytest program uses its exit code to specify whether
all tests passed or not. As typical for *nix programs a status of zero indicates
success (all tests passed) and other values an error (in this case: some tests
failed). The exit status can then be used to automate the testing and inform
the user of failures so he can look at the generated log.

3.2. EasyCheck

The second existing test framework we look at is EasyCheck. In contrast to
CurryTest, EasyCheck is only included in KiCS (Version one in this case).
Additionally, a newer version named curry-test exists which is only available
for the MCC 2 as it uses type classes and some libraries di�er between the
MCC and KiCS(2)/PACKS.

2Münster Curry Compiler
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EasyCheck is inspired by Haskell's QuickCheck [11][9][8]. The idea behind
it is to write tests as properties and generate random input values. The
EasyCheck library provides a small set of operators to create properties and
the easyCheck and verboseCheck functions to test properties.
The �rst operator EasyCheck provides is (-=-). (-=-) is used to test

deterministic functions and produces an error when used on non-deterministic
ones. Like all the other operators, (-=-)'s arguments cannot be functions. If
we want to generate test data, our test function has to have the corresponding
arguments and then apply them to the functions we want to compare. Let
us look at the following example.

reverseLeavesSingletonUntouched :: Bool -> Prop

reverseLeavesSingletonUntouched x = reverse [x] -=- [x]

We de�ned a property named reverseLeavesSingletonUntouched. As
this holds for all singleton lists, we introduced a parameter x to generate a
random value for our list. The right side of our test function is the actual
property. Since reverse [x] and [x] are deterministic values (as long as x is
deterministic), we use (-=-) to de�ne the property. Although this property
holds for all types, the signature contains a speci�c type for x, namely Bool.
We could have chosen any other type like Int or (Int, Maybe Bool), as long
as we choose a concrete type, because EasyCheck has to generate values and
needs a concrete type declaration for this.
The next three operators ((∼>), (<∼), (<∼>)) we look at deal with non-

deterministic tests. All three operators expect a non-deterministic function
of type a as �rst and second argument. In contrast to assertValues and
assertSolutions the result sets of the non-deterministic operations are not
interpreted as multi-sets but as sets. The �rst of the three operators ((∼>))
tests, if the �rst result set is a superset of the second. This way we can test
for a function to return at least some known values. The following property
tests for our coin to return at least zero.

coinCanBeHeads :: Prop

coinCanBeHeads = coin1 ∼> 0

A more productive example would be the following function:

insert :: a -> [a] -> [a]

insert x ys = x : ys

insert x (y:ys) = y : insert x ys
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insert places a value at an arbitrary position in a list. One possible result
of insert x xs should obviously be x:xs. Using (∼>) we can write this as
follows.

insertAtFirstPlace :: Int -> [Int] -> Prop

insertAtFirstPlace x xs = insert x xs ∼> x:xs

Since we also know a second trivial solution, namely inserting x at the last
position, we can write a second test.

insertAtLastPlace :: Int -> [Int] -> Prop

insertAtLastPlace x xs = insert x xs ∼> xs ++ [x]

As stated earlier, EasyCheck interprets both sides of the operator as non-
deterministic values. We can use this to rewrite our two tests into a single
test containing all trivial solutions.

insertTrivial :: Int -> [Int] -> Prop

insertTrivial x xs = insert x xs ∼> (x:xs ? xs ++ [x])

The (<∼) operator simply checks, if the �rst result set is a subset of the
second one. This can be useful when calculating a superset of the possible
solutions is easy. A very simple example would be our coin again. We know
that only 0 and 1 should be in the result set.

coinHasOnlyHeadsAndTails :: Prop

coinHasOnlyHeadsAndTails = coin1 <∼ (0 ? 1)

It is important to note that coinHasOnlyHeadsAndTails does not fail if
coin has a multi-set of solutions containing more than one 0 or 1.
With (∼>)'s and (<∼)'s semantic consistent, (<∼>) tests if the �rst and

second argument's return sets are equal. A good way to use this function, is to
test two di�erent versions of the same function. In section 2.3 we introduced
two di�erent versions of coin: coin1 and coin2. Using (<∼>) we can test
if both produce the same result set.

coin1AndCoin2 :: Prop

coin1AndCoin2 = coin1 <∼> coin2

Since a key feature of EasyCheck is the ability to generate test data, it might
be necessary to restrict the generated values. Let us consider the following
example. The tail function returns all elements of a list, except for the �rst
one. A simple property that could be deduced is that the result of tail is a
list one element shorter than the original list.

17
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tailReducesLength :: [Bool] -> Prop

tailReducesLength xs = length (tail xs) -=- length xs - 1

So far we only de�ned properties, to actually test them we have to call them
using a set of functions EasyCheck provides. For properties without parame-
ters we have to use easyCheck property and for properties with parameters
we have to call easyCheckX property, where X is the number of parameters
the property expects. EasyCheck provides functions for up to �ve parame-
ters. As there is no possibility to automatically execute all EasyCheck tests
in a module, we have to write a main function like this:

main = do

easyCheck1 reverseLeavesSingletonUntouched

easyCheck coinCanBeHeads

easyCheck2 insertTrivial

easyCheck coinHasOnlyHeadsAndTails

easyCheck coin1AndCoin2

easyCheck1 tailReducesLength

When we execute main, EasyCheck produces the number of tests executed
for each property.

Passed 2 tests.

Passed 1 test.

OK, passed 1000 tests.

Passed 1 test.

Passed 1 test.

Falsified by first test.

Arguments:

[]

no result

In this example our last test failed. The output states three di�erent things:

1. The number of the test that failed, in this case the �rst.

2. The generated arguments ([]).

3. All the results calculated for the left side of the operator. Or in this
case no result because tail simply fails when called with the empty
list.
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In this example the problem is our de�ned property: it does not hold for
the empty list. Since it is a common occurrence that properties do not hold
for some values, EasyCheck provides the (==>) operator. (==>) allows us to
de�ne an additional condition that must be true for the property to be tested.
Using (==>) we can rewrite tailReducesLength to exclude the empty list as
possible value.

tailReducesLength ' :: [Bool] -> Prop

tailReducesLength ' xs

= not (isEmpty xs) ==> length (tail xs) -=- length xs - 1

The (==>) operator can be used in combination with every other oper-
ator discussed in this section. After rewriting the main function to use
tailReducesLength' all tests pass.

[...]

OK , passed 1000 tests.

Besides easyCheck and its variations, the EasyCheck library also provides
verboseCheck and the corresponding versions for properties expecting argu-
ments. These functions provide additional information for each executed test.
Speci�cally the generated arguments for each test.
As the outputs shown above demonstrate, EasyCheck in no way identi�es

the property being tested. Because of this lack of information, it is reasonable
to include some additional information in the main function, for example
printing the name of each property before testing it.
In contrast to CurryTest EasyCheck provides no other means than the

textual output to identify if a test failed.
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In this chapter we will introduce CurryCheck 's interface. For each function
CurryCheck provides we will show some examples of usage and de�ne the
semantics of the operation. We will also show how previous tests using Cur-
ryTest or EasyCheck can be ported to CurryCheck. All in all, CurryCheck
provides one data type, seven operators and two helper functions to de�ne
tests.

4.1. Basic structure of CurryCheck

CurryCheck consist of two parts: a library and a program. The library module
(CurryCheck) has to be imported by any module in which tests will be de�ned.
The library provides all data types and functions discussed in the remainder of
this chapter. The second part is an executable (currycheck). The currycheck
program provides the means to automatically execute all de�ned tests. To
identify which test runs, CurryCheck uses the name of the test function as
an identi�er. It is therefore advisable to use meaningful names for the tests.

4.2. CTest a

The �rst data type CurryCheck provides is CTest a. All of CTest's con-
structors are hidden by the library and it can only be constructed via the
provided functions. The importance of CTest is that all top level functions
evaluating to CTest a will be executed by the currycheck program. Thereby
the visibility of the functions does not matter. So in contrast to CurryTest,
private global functions will be executed as well.
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4.3. (-==-)

(-==-) is the heart of the CurryCheck framework and most test can be de�ned
with this operator. In contrast to EasyCheck 's (-=-) the (-==-)-operator
does not restrict itself to deterministic arguments and partially applied func-
tions are possible as well. We will de�ne a series of example tests examining
di�erent argument types and discuss the semantics of (-==-) in each case,
but simply put: both sides should evaluate to the same value.

(-==-) :: a -> a -> CTest a

(-==-) takes two arguments of type a and returns a CTest a. The simplest
usage of (-==-) is to compare two deterministic values. To test our isEmpty
function with the empty list we can write the following code:

testIsEmpty :: CTest Bool

testIsEmpty = isEmpty [] -==- True

As both sides are deterministic values, the semantics are simple: if the
values are the same, the test passes, otherwise it fails. As stated earlier,
partial functions are possible as well. The use of partial functions allows us
to de�ne properties similar to EasyCheck. Let us consider the associativity
of (+). When working with Ints in Curry the order of the arguments should
not a�ect the outcome of the (+) - operation. To test this with CurryCheck
we can de�ne the following test case.

plusIsAssociative :: CTest (Int -> Int -> Int)

plusIsAssociative = (+) -==- flip (+)

Both arguments are still deterministic, but now we deal with functions
instead of simple values. In CurryCheck two deterministic functions are equal
((-==-)) if they both evaluate to the same value when called with the same
arguments.
When using non-deterministic values with (-==-), we compare the multi-

sets of the results. For the test to pass, both sides have to have the same
multi-set of results. So (1 ? 0) and (0 ? 1) are considered equal, but (0
? 1 ? 1) and (0 ? 1) are not, as the �rst expression has a multi-set of
{0, 1, 1} and the second expression only of {0, 1}. The use of multi-sets
allows us to not consider the order in which the values are produced.
To use our two coin implementations again, we can compare them using

CurryCheck like this:
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coin1AndCoin2 :: CTest Int

coin1AndCoin2 = coin1 -==- coin2

Lastly we can also use non-deterministic functions as arguments of (-==-).
As with deterministic functions, the results of each generated input are com-
pared and, like non-deterministic values, this comparison considers the multi-
set of results. Using this we can compare two versions of a function to test if
they produce exactly the same results. As an example let us consider insert
again. More exactly the Curry system should produce the same results when
we reorder the rules.

insert ' :: a -> [a] -> [a]

insert ' x (y:ys) = y : insert x ys

insert ' x ys = x : ys

To test this, we can use (-==-):

testInsert :: CTest (Bool -> [Bool] -> [Bool])

testInsert = insert -==- insert '

Although insert and insert' are both de�ned as polymorphic functions,
we must use a concrete type in our test de�nition because the test system
has to know a concrete type to generate test data.
So far we only used plain values and partially applied functions in our

tests. As stated in section 4.2, all global functions evaluating to CTest a are
executed. This means that, like with EasyCheck, we can write our tests as
functions with parameters.

plusIsAssociative ' :: Int -> Int -> CTest Int

plusIsAssociative ' x y = x + y -==- y + x

plusIsAssociative and plusIsAssociative' are essentially two di�erent
syntaxes for the same test. Furthermore, CurryCheck allows a mixed style.

plusIsAssociative '' :: Int -> CTest (Int -> Int)

plusIsAssociative '' x = (x+) -==- (+x)

4.4. (<∼∼), (∼∼>), and (<∼∼>)

(<∼∼), (∼∼>) and (<∼∼>) are CurryCheck 's set operators. Like their
EasyCheck counterparts, (<∼), (<∼>), and (<∼>), they evaluate both
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their arguments and compare the result sets, so semantically they are identi-
cal.But unlike EasyCheck 's versions, CurryCheck 's set operators also support
functions as arguments and the mixed syntax seen in section 4.3.

(<∼∼), (∼∼>), (<∼∼>) :: a -> a -> CTest a

4.5. (===>)

As CurryCheck provides automatic test data generation, like in EasyCheck, it
is important to be able to restrict the generated data. Following EasyCheck 's
example we provide the (===>) operator.

(===>) :: Bool -> CTest a -> CTest a

The operator's two arguments are a boolean value and a CTest a. It is
important to note that a cannot be a functional type in this context. That
means, (===>) only supports the syntax style of EasyCheck. As an example
of using (===>) let us revisit tailReducesLength from section 3.2.

tailReducesLength :: [Bool] -> CTest Int

tailReducesLength xs

= not (isEmpty xs) ===> length (tail xs) -==- length xs

Like EasyCheck, CurryCheck uses a generated value only if (===>)'s �rst
argument evaluates to True.

4.6. IO tests

So far all operators work with pure functions. To test IO-functions Cur-
ryCheck provides two operators: `resultsIn` and `sameAs`. These two
functions provide semantics equal to CurryTest 's IO-assertions.

resultsIn :: IO a -> a -> CTest a

sameAs :: IO a -> IO a -> CTest a

Thereby resultsIn directly compares the result of an IO-action with the
second argument, like assertIO. Whereas sameAs compares the results of
two IO-operations, like assertEqualIO. Although both resultsIn as well as
sameAs yield a value of type CTest a, they cannot be used with (===>) or
generated arguments.
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4.7. anyOf and anySolutionOf

In section 3.2 we de�ned insertTrivial to test insert for two trivial results:
the insertion at �rst and last position. To specify the two possible results, we
had to use the (?)-operator, although on a semantic level we want to specify
a set of values. CurryCheck provides the anyOf function to grant a more set
like syntax.

insertTrivial :: Bool -> [Bool] -> CTest [Bool]

insertTrivial x xs = insert x xs ∼∼> anyOf [x:xs , xs++[x]]

anyOf also enables us to more easily port tests from CurryTest, as we will
see in section 4.10. The anyOf function yields one element of its �rst argument
non-deterministically.
As CurryCheck does not provide a direct way for testing constraint ab-

stractions like CurryTest. anySolutionOf takes a constraint abstraction and
returns a single solution. Like anyOf, it is a non-deterministic function and
as such has a result set of all possible solutions of its argument.

anySolutionOf :: (a -> Success) -> a

4.8. Limits when using partially applied

functions

It was mentioned in section 4.3 and section 4.4 that partially applied functions
can be used as arguments of CurryCheck 's operators. It is important to note
that this syntax has some limitations. It is only possible to use partially
applied functions when the operator is used directly on the right hand side
of the tests de�nition. To clarify here an example:
We have seen (-==-) being used with partially applied functions in sec-

tion 4.3.

testInsert = insert -==- insert '

Here (-==-) is used directly on the right hand side of testInsert's de�-
nition. However, it is not possible to rewrite this test like this:

testInsert = helper

where helper = insert -==- insert '
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This restriction comes from the fact that CurryCheck has to transform
tests with partially applied functions into tests using only fully applied ones.
This transformation is necessary for CurryCheck to be able to pass the tests
to EasyCheck. As part of the transformation, CurryCheck has to modify the
right hand side of the test. Speci�cally, it has to add additional parameters
to the operator's arguments (subsection 5.4.1), insert and insert' in this
example.

4.9. Porting from EasyCheck

In this section we will look at how to port the di�erent types of tests from
EasyCheck to CurryCheck. As the syntax of both frameworks is very similar
this is a rather straight forward process and mainly involves renaming the
operators. Table 4.1 shows how to rename the operators.

Table 4.1.: operator mapping between EasyCheck and CurryCheck

EasyCheck CurryCheck

(-=-) (-==-)

(<∼) (<∼∼ )

( ∼>) ( ∼∼>)
(<∼>) (<∼∼>)
(==>) (===>)

After changing the operators the only thing left to do is to adjust the
signatures. More exactly, the Prop part of the signatures has to be changed
to the correct instantiation of CTest a.
The following listing shows three examples.

-- EasyCheck

reverseLeavesSingletonUntouched :: Bool -> Prop

reverseLeavesSingletonUntouched x = reverse [x] -=- [x]

-- CurryCheck

reverseLeavesSingletonUntouched :: Bool -> CTest [Bool]
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reverseLeavesSingletonUntouched x = reverse [x] -==- [x]

-- EasyCheck

coinCanBeHeads :: Prop

coinCanBeHeads = coin1 ∼> 0

-- CurryCheck

coinCanBeHeads :: CTest Int

coinCanBeHeads = coin1 ∼∼> 0

-- EasyCheck

isEmptyIsFalseForNonEmptyLists :: [Bool] -> Prop

isEmptyIsFalseForNonEmptyLists xs

= length xs > 0 ==> isEmpty xs -=- False

-- CurryCheck

isEmptyIsFalseForNonEmptyLists :: [Bool] -> CTest Bool

isEmptyIsFalseForNonEmptyLists xs

= length xs > 0 ===> isEmpty xs -==- False

4.10. Porting from CurryTest

In this section we will examine the porting of tests from CurryTest to Cur-
ryCheck. As the interface is designed after EasyCheck, a little more work has
to be done than when porting EasyCheck to CurryCheck. In section 3.1 we
already showed that assertTrue and assertEqual can easily be rewritten
using assertValues. assertValues was based on the comparison of multi-
sets. The only operator CurryCheck provides which compares multi-sets for
equality is (-==-). We therefore have to rewrite tests using one of these three
functions using (-==-).
In the case of assertTrue and assertEqual we can simply use (-==-)

to compare the values. As CurryCheck uses the name of the test function
to identify the test instead of a additional String argument, we simply use
the String argument as function name (we have to be careful with special
characters).

-- CurryTest

testEmptyList :: Assertion ()

testEmptyList = assertTrue "empty list is empty" (isEmpty [])
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-- CurryCheck

emptyListIsEmpty :: CTest Bool

emptyListIsEmpty = isEmpty -==- True

-- CurryTest

testReverse1 :: Assertion [Int]

testReverse1 = assertEqual "reverse1" (reverse []) []

-- CurryCheck

reverse1 :: CTest [Int]

reverse1 = reverse [] -==- []

In contrast to (-==-), assertValues expects the multi-set as argument,
whereas (-==-) expects a non-deterministic function, which results are the
elements of the multi-set. To simplify the transition from CurryTest we can
use the helper function anyOf.

-- CurryTest

testCoin1 :: Assertion Int

testCoin1 = assertValues "coin1" coin1 [0, 1]

-- CurryCheck

testCoin1 :: CTest Int

testCoin1 = coin1 -==- anyOf [0, 1]

To port tests using assertSolutions to CurryCheck we can use a combi-
nation of anySolutionOf and anyOf. We use anySolutionOf to transform
the constraint abstraction into a non-deterministic value and anyOf to trans-
form the multi-set of expected results like before. Since assertSolutions

also uses multi-set comparison, we use (-==-) again to de�ne the test.

-- CurryTest

testPrefix :: Assertion [Int]

testPrefix = assertSolutions "prefix" (\x -> x++_ =:= [1 ,2])

[[[] ,[1] ,[1 ,2]]

-- CurryCheck

testPrefix :: CTest [Int]

testPrefix = anySolutionOf (\x -> x++_ =:= [1 ,2]) -==-

anyOf [[], [1], [1 ,2]]

The last two functions are assertIO and assertEqualIO. CurryTest's IO-
tests can be ported to CurryCheck using resultsIn and sameAs. resultsIn
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in used to port assertIO tests and sameAs for assertEqualIO, respectively.
As the parameter types are the same for CurryCheck 's and CurryTest 's IO
functions, no arguments have to be altered, except for the String. The
following code shows the conversion of an IO-test using resultsIn.

-- CurryTest

testDir :: Assertion (Bool , Bool , Bool , Bool)

testDir = assertIO "test create/rename/delete directory"

dirOps (True ,False ,True ,False)

where

dirOps = do

-- ...

-- CurryCheck

createRenameDeleteDir :: CTest (Bool , Bool , Bool , Bool)

createRenameDeleteDir

= dirOps `resultsIn ` (True ,False ,True ,False)

where

dirOps = do

-- ...
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In this chapter we will examine the implementation of CurryCheck. First
of all we look at what CurryCheck has to generate to execute the tests.
After that we discuss some necessary changes and extensions to EasyCheck
to support the semantics de�ned in the previous chapter. Lastly we address
how CurryCheck is implemented. More precisely, how CurryCheck analyses
the source code and how it generates and executes the tests.
As stated in section 2.4, AbstractCurry is used extensively in the imple-

mentation of CurryCheck. Most functions and data types provided by Ab-
stractCurry will not be discussed in detail. The underlying data structures
de�ned by AbstractCurry are quite cumbersome and it is more important to
understand what is being generated (the actual Curry code) and what in-
formation are used than it is to understand how the underlying data types
work. Furthermore, we will not always explicitly distinguish between the Ab-
stractCurry representation of a piece of code and the code itself. It should
be clear that our code works on the abstract representation and the actual
code gets only generated when calling showCProg/saveCurryCode. We may
for example say that the function cfunc generates a function although it ac-
tually yields the abstract representation of a function (CFuncDecl). To make
it easier to follow the code without diving into the AbstractCurry, we will
often refer to the listings provided in section 5.1 to identify what actually
gets analysed, modi�ed or generated in a speci�c part of the program using
an example.

5.1. Generated code

In this section we will look at the code generated by CurryCheck. On this
account, this chapter contains multiple larger code listings. These listings
will also get referenced by late sections in this chapter when discussing the
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implementation in more detail.

Listing 5.1 shows an example �le (Demo.curry) containing some tests using
CurryCheck. It basically consists of a selection of tests shown in chapter 4. In
short, Demo.curry exports three of its top-level functions, namely isEmpty,
insert, and insert'. All of these have been introduced in previous chapters.

After the module's imports, the function de�nitions mixed with the tests
follow. In this Demo the tests follow directly after the corresponding function
de�nition. As one of the ideas behind CurryCheck was to use this locality
to generate a more useful output. In this example the tests follow after the
function de�nition, but the other way around is just as reasonable. After
the de�nitions of isEmpty, insert, and insert' and a total of four corre-
sponding tests. Another �ve non related tests follow. The �rst two of these
�ve tests are really minimalistic IO-tests to show how CurryCheck handles
these kind of tests. The last three tests are the three di�erent versions of
plusIsAssociative from section 4.3, as they demonstrate the three possible
syntaxes to directly compare functions.

Listing 5.1: Demo.curry - Curry �le containing tests

1 module Demo

2 ( isEmpty

3 , insert

4 , insert '

5 ) where

6
7 import CurryCheck

8 import Assertion

9 import EasyCheck

10 import System (system)

11 import List (splitOn)

12
13 -- tests if a list is empty

14 isEmpty :: [a] -> Bool

15 isEmpty [] = True

16 isEmpty (_:_) = False

17
18 testIsEmpty :: CTest Bool

19 testIsEmpty = isEmpty [] -==- True

20
21 -- usage of (===>)
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22 isEmptyIsFalseForNonEmptyLists :: [Bool] -> CTest Bool

23 isEmptyIsFalseForNonEmptyLists xs

24 = length xs > 0 ===> isEmpty xs -==- False

25
26 -- two versions of insert and tests

27 insert :: a -> [a] -> [a]

28 insert x ys = x : ys

29 insert x (y:ys) = y : insert x ys

30
31 insert ' :: a -> [a] -> [a]

32 insert ' x (y:ys) = x : insert y ys

33 insert ' x ys = x : ys

34
35 testInsert :: CTest (Bool -> [Bool] -> [Bool])

36 testInsert = insert ' -==- insert

37
38 insertTrivial :: Bool -> [Bool] -> CTest [Bool]

39 insertTrivial x xs = insert x xs ∼∼> anyOf [x:xs , xs++[x]]

40
41 -- minimalistic IO examples

42 ioExample1 :: CTest Int

43 ioExample1 = return 2 `resultsIn ` 2

44
45 ioExample2 :: CTest Int

46 ioExample2 = return 2 `sameAs ` return 2

47
48 -- test associativity of (+)

49 -- 1. function as argument

50 plusIsAssociative :: CTest (Int -> Int -> Int)

51 plusIsAssociative = (+) -==- flip (+)

52
53 -- 2. fully applied function arguments

54 plusIsAssociative ' :: Int -> Int -> CTest Int

55 plusIsAssociative ' x y = x + y -==- y + x

56
57 -- 3. mixed syntax

58 plusIsAssociative '' :: Int -> CTest (Int -> Int)

59 plusIsAssociative '' x = (x+) -==- (+x)

To test Demo.curry, we have to execute the currycheck executable with the
module name as argument: currycheck Demo. CurryCheck then generates
two di�erent kinds of �les. For each module (in this case only Demo) it gener-
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ates a copy called ModuleName_test.curry. This copy contains all functions
of the original module and a possibly modi�ed version of each test. More
speci�cally, CurryCheck modi�es each test, that uses direct function com-
parison without applied arguments (cf. plusIsAssociative) or the mixed
syntax (cf. plusIsAssociative′′). Besides these changes to the tests, all
global functions in this new module are public. Listing 5.2 shows the modi-
�ed version of Demo.curry.

Listing 5.2: Demo_test.curry - generated �le; containing modi�ed tests

1 module Demo_test where

2
3 import CurryCheck

4 import Assertion

5 import EasyCheck

6 import System

7 import List

8
9 testIsEmpty :: CurryCheck.CTest Bool

10 testIsEmpty

11 = isEmpty [] -==- True

12
13 isEmptyIsFalseForNonEmptyLists :: [Bool] -> CurryCheck.CTest Bool

14 isEmptyIsFalseForNonEmptyLists xs

15 = (length xs > 0) ===> (isEmpty xs -==- False)

16
17 testInsert :: Bool -> [Bool] -> CurryCheck.CTest [Bool]

18 testInsert x1 x2

19 = insert ' x1 x2 -==- insert x1 x2

20
21 insertTrivial :: Bool -> [Bool] -> CurryCheck.CTest [Bool]

22 insertTrivial x xs

23 = insert x xs ∼∼> CurryCheck.anyOf [x : xs ,xs ++ [x]]

24
25 ioExample1 :: CurryCheck.CTest Int

26 ioExample1

27 = CurryCheck.resultsIn (return 2) 2

28
29 ioExample2 :: CurryCheck.CTest Int

30 ioExample2

31 = CurryCheck.sameAs (return 2) (return 2)

32
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33 plusIsAssociative :: Int -> Int -> CurryCheck.CTest Int

34 plusIsAssociative x1 x2

35 = (x1 + x2) -==- flip (+) x1 x2

36
37 plusIsAssociative ' :: Int -> Int -> CurryCheck.CTest Int

38 plusIsAssociative ' x y

39 = (x + y) -==- (y + x)

40
41 plusIsAssociative '' :: Int -> Int -> CurryCheck.CTest Int

42 plusIsAssociative '' x x1

43 = (\ x0 -> x + x0) x1 -==- (\ x0 -> x0 + x) x1

44
45 isEmpty :: [a] -> Bool

46 isEmpty []

47 = True

48 isEmpty (_ : _)

49 = False

50
51 insert :: a -> [a] -> [a]

52 insert x ys

53 = x : ys

54 insert x (y : ys)

55 = y : insert x ys

56
57 insert ' :: a -> [a] -> [a]

58 insert ' x (y : ys)

59 = x : insert y ys

60 insert ' x ys

61 = x : ys

In contrast to the �rst kind of generated �les (the module copies), the
second kind is only generated once for all modules. As of now all tests are
still of type CTest a. Since we are using EasyCheck and CurryTest as the
underlying frameworks to execute our tests, we have to convert our tests.
This is done in execTests.curry (Listing 5.3). execTests.curry consists of two
parts: a main function that executes the tests if called, and one function for
each test it has to execute. Since this module comprises all converted tests,
it has to import all generated copies of test modules and both Assertion and
EasyCheck.

The main-functions �rst calls the currytest tool with itself as argument
to automatically execute all Assertions. We have seen in section 3.2 that
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EasyCheck does not automatically �nd and execute tests. Because of this, it
afterwards executes all the remaining tests using EasyCheck.
The converted tests have on of two types: Assertion a or IO Bool. Every

test that uses EasyCheck is of type IO Bool and gets called from within the
main-function.

Listing 5.3: execTests.curry - generated �le; this is executed to run the tests

1 module execTests where

2
3 import Assertion

4 import CurryCheck

5 import EasyCheck

6 import Demo_test

7
8 main :: IO ()

9 main

10 = do x <- CurryCheck.execAsserts "execTests"

11 CurryCheck.execProps x

12 [isEmptyIsFalseForNonEmptyLists_Demo ,testInsert_Demo

13 ,insertTrivial_Demo ,plusIsAssociative_Demo

14 ,plusIsAssociative '_Demo

15 ,plusIsAssociative ''_Demo ,testIsEmpty_Demo]

16
17 isEmptyIsFalseForNonEmptyLists_Demo :: IO Bool

18 isEmptyIsFalseForNonEmptyLists_Demo

19 = EasyCheck.easyCheck1

20 "isEmptyIsFalseForNonEmptyLists in module Demo (line 22)"

21 (\ x1 -> CurryCheck.testProp

22 (Demo_test.isEmptyIsFalseForNonEmptyLists x1))

23
24 testInsert_Demo :: IO Bool

25 testInsert_Demo

26 = EasyCheck.easyCheck2 "testInsert in module Demo (line 35)"

27 (\ x1 x2 -> CurryCheck.testProp (Demo_test.testInsert x1 x2))

28
29 insertTrivial_Demo :: IO Bool

30 insertTrivial_Demo

31 = EasyCheck.easyCheck2 "insertTrivial in module Demo (line 38)"

32 (\ x1 x2 -> CurryCheck.testProp

33 (Demo_test.insertTrivial x1 x2))

34
35 plusIsAssociative_Demo :: IO Bool
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36 plusIsAssociative_Demo

37 = EasyCheck.easyCheck2

38 "plusIsAssociative in module Demo (line 50)"

39 (\ x1 x2 -> CurryCheck.testProp

40 (Demo_test.plusIsAssociative x1 x2))

41
42 plusIsAssociative '_Demo :: IO Bool

43 plusIsAssociative '_Demo

44 = EasyCheck.easyCheck2

45 "plusIsAssociative ' in module Demo (line 54)"

46 (\ x1 x2 -> CurryCheck.testProp

47 (Demo_test.plusIsAssociative ' x1 x2))

48
49 plusIsAssociative ''_Demo :: IO Bool

50 plusIsAssociative ''_Demo

51 = EasyCheck.easyCheck2

52 "plusIsAssociative '' in module Demo (line 58)"

53 (\ x1 x2 -> CurryCheck.testProp

54 (Demo_test.plusIsAssociative '' x1 x2))

55
56 testIsEmpty_Demo :: IO Bool

57 testIsEmpty_Demo

58 = EasyCheck.easyCheck0 "testIsEmpty in module Demo (line 18)"

59 (CurryCheck.testProp Demo_test.testIsEmpty)

60
61 ioExample1_Demo :: Assertion.Assertion Int

62 ioExample1_Demo

63 = CurryCheck.testFunc Demo_test.ioExample1

64 "ioExample1 in module Demo (line 42)"

65
66 ioExample2_Demo :: Assertion.Assertion Int

67 ioExample2_Demo

68 = CurryCheck.testFunc Demo_test.ioExample2

69 "ioExample2 in module Demo (line 45)"

So far we only looked at what CurryCheck generates to execute the tests.
Listing 5.4 shows the generated output of currycheck Demo in which the
output of the Curry compiler is omitted.

Listing 5.4: 'currycheck Demo' output

$ currycheck Demo

[...]

execTests Assertion System > ============================
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Testing module "execTests"...

OK: ioExample1 in module Demo (line 42)

OK: ioExample2 in module Demo (line 45)

All tests successfully passed.

isEmptyIsFalseForNonEmptyLists in module Demo (line 22):

OK, passed 1000 tests.

testInsert in module Demo (line 35) failed

Falsified by 5th test.

Arguments:

True

[False]

Results:

[True ,False]

insertTrivial in module Demo (line 38):

OK, passed 1000 tests.

plusIsAssociative in module Demo (line 50):

OK, passed 1000 tests.

plusIsAssociative ' in module Demo (line 54):

OK, passed 1000 tests.

plusIsAssociative '' in module Demo (line 58):

OK, passed 1000 tests.

testIsEmpty in module Demo (line 18):

Passed 1 test.

Evaluation terminated with non -zero status 1

At the top of the output we see the results of our two IO-tests. Since
CurryCheck �rst calls CurryTest, and CurryTest is only used for IO-tests, all
IO-tests will be shown at the top of the output, independently of its module
or position in relation to non-IO-tests. The message shown is generated by
CurryCheck, and uses the test function's name, module, and line number to
identify the test. In this example we can identify the failed test as testInsert
and use the module name and line number to easily �nd the test's de�nition
and the function it tests. It turns out that we mode a mistake in our imple-
mentation of insert' and switched x and y in the right hand side of the �rst
rule (Listing 5.1, line 32).

After the IO-tests the output of the remaining tests is shown. In contrast
to the original EasyCheck it displays the name of the test function, module
name, and line number before the tests result.
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5.2. Modi�cations to EasyCheck

In the previous section, we discussed the di�erent �les generated by Cur-
ryCheck and the generated test output. Before we dive into the details of how
CurryCheck generates these �les, we �rst look at some small modi�cations
to the original EasyCheck. These modi�cations where necessary, considering
that we want to provide a more concise output and use multi-sets to compare
functions. We have seen in section 3.2 that the original EasyCheck only uses
a set based approach to compare results of non-deterministic expressions.

Multi-set semantics

First of we look at the implementation of multi-set semantics. Since we
do not want to replace the set semantics altogether, but only add multi-
set semantics as an supplementary feature, the original operators where not
modi�ed. Instead we introduce two new functions to EasyCheck : isSameMSet
and (<=>).

The following listing shows the de�nition of isSameMSet.

isSameMSet :: [a] -> [a] -> Bool

[] `isSameMSet ` ys = ys == []

(x:xs) `isSameMSet ` ys

| x `elem ` ys = xs `isSameMSet ` (delete x ys)

| otherwise = False

Just like isSameSet and isSubsetOf, isSameMSet provides set (or in this
case multi-set) semantics on top of lists. The current implementation is
straight forward. If the �rst list is empty, the second one has to be as well,
otherwise the two lists represent di�erent multi-sets. If, on the other hand,
the �rst list is not empty, its �rst element (x) has to be part of the second list
at least once. In that case the rest list of the �rst argument (xs) is compared
to the second list minus the �rst occurrence of x. Should the second list not
contain x the two lists represent di�erent multi-sets.

isSameMSet is then used to implement (<=>) like (<∼>).

(<=>) :: a -> a -> Prop

x <=> y = test x (isSameMSet (valuesOf y))
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Adding output

Since we want to provide EasyCheck with additional information to print (e.g.
line number), we have to add an additional argument to all easyCheck and
verboseCheck variations. This new String argument is the same as used
with CurryTest. As a result easyCheck2 for example looks like this.

easyCheck2 :: String -> (_ -> _ -> Prop) -> IO ()

The string argument is then relayed to EasyCheck 's test function, which
also generates the output. A second modi�cation to all easyCheck and
verboseCheck versions is a change in the functions' result type. Instead of IO
() the new versions have a result type of IO Bool. The boolean value is used
to indicate whether the test passed (True) or not (False). This information
is used by CurryCheck to calculate its exit code.
In summary the new function signatures for easyCheck/verboseCheck look

like this.

easyCheckN :: String -> (_ -> ... -> Prop) -> IO Bool

5.3. Mapping to EasyCheck and CurryTest

Now that we have seen the di�erent kinds of �les generated by CurryCheck, it
is time to look at the mapping from CurryCheck to EasyCheck and CurryTest.
More exactly what operator gets mapped to what framework.

IO / resultsIn, sameAs

These two operators are the only ones that get mapped to CurryTest. Since
CurryTest is the only underlying framework that supports IO-tests, it is the
only choice for IO-tests. As already seen in section 4.10, albeit in the other
direction, there is a direct correlation between resultsIn and assertIO,
respectively, sameAs and assertEqualIO.

(<∼∼>), (<∼∼), and (∼∼>)

Like resultsIn and sameAs with CurryTest, these three operators are di-
rectly correlated with EasyCheck as they have the same semantics as there
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EasyCheck counterparts (<∼>), (<∼), and (∼>). Furthermore, there is no
support for set semantics in CurryTest. For these reasons, the three operators
get mapped to EasyCheck.

(-==-)

The only remaining operator is (-==-). Although CurryTest supports multi-
set semantics with assertValues and assertSolutions, we can only use
them with fully applied functions, as CurryTest does not support test data
generation. Because of this the use of CurryTest for (-==-) is severely lim-
ited. It is, on the other hand, also possible to test fully applied functions with
EasyCheck. As this possibility combined with the modi�cations to EasyCheck
discussed in section 5.2 enables us to map all applications of (-==-) directly
to EasyCheck, we will do precisely that.

5.4. Implementation details

Now it is time to take a more detailed look at the implementation of Cur-
ryCheck. The process of executing a test can be loosely split into three phases.

1. generate copies of all modules and analyse them

2. generate execTests.curry

3. execute execTests.main

This structure can be seen in the main function of currycheck.

main :: IO ()

main = do

[...]

testModules <- genTestEnvironment mode args

genTestModule mode testModules

ret <- execTests mode

cleanup mode testModules

exitWith ret
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After processing the command line arguments (omitted in the code above),
the main functions calls three di�erent functions, namely genTestEnvironment,
getTestModule, and execTests, which implement the three di�erent phases.
For the rest of this chapter we will discuss each phase and its implementation
in more detail.

5.4.1. Phase 1 - genTestEnvironment

The �rst step is to create a modi�ed copy of the input modules and analyse the
code for tests. We refer to the created �les in this step as the test environment,
as they are necessary for execTests.curry, which actually executes the tests.
The function genTestEnvironment implements this �rst step. It transforms
a list of module names into a list of TestModules. During this process it also
creates the modi�ed copies of the modules (cf. Listing 5.2).

genTestEnvironment :: VerbosityMode

-> [String]

-> IO [TestModule]

genTestEnvironment m = mapIO (genAndAnalyseModule m)

Internal data types

The �rst data type to look at is CTest a as all tests are of this type.

data CTest a

= EqualTest a a

| CondTest Bool (CTest a)

| SubSetTest a a

| SetTest a a

| IOAssertion (IO a) a

| IOEqualAssertion (IO a) (IO a)

CTest a basically consists of one constructor per operator CurryCheck pro-
vides to de�ne tests. The exception being (<∼∼) and (∼∼>) both using
SubSetTest. CurryCheck pattern matches over these constructors during the
analysis to classify the tests (Listing 5.7).
A TestModule represents all the information CurryCheck needs to execute

the next two phases. This allows us to parse the input modules only during
the �rst phase. There are four types of information needed during the next
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two stages. The original name of the module, as this has to be used to
identify the test in the output, the modi�ed name, and a representation of
the contained tests.

data TestModule = TestModule

{ moduleName :: String

, newName :: String

, tests :: Tests

}

Before we look at how these information are generated, we will examine
the representation of the tests.

data Test = PropTest QName Int Int

| AssertTest QName CTypeExpr Int

Each test is either a property based test or an assertion based test, which get
mapped to EasyCheck or CurryTest, respectively. In both cases we need the
functions name (QName) and the line number in which the test is de�ned (the
last argument). In the case of a property based test we additionally need the
information about the test's arity (the second argument) to determine which
version of easyCheck/verboseCheck has to be used. For assertion based
tests, on the other hand, we need the original type signature (CTypeExpr).

genAndAnalyseModule

Listing 5.5: genAndAnalyseModule

1 genAndAnalyseModule :: VerbosityMode -> String -> IO TestModule

2 genAndAnalyseModule m moduleName = do

3 prog <- readCurry moduleName

4 lines <- getLines $ moduleName ++ ".curry"

5 let words = firstWordsOfLines lines

6 let (rawTests , newMod) = transformModule prog

7 saveCurryCode newMod

8 renameModule2 moduleName newModName

9 tests <- classifyTests m newModName rawTests

10 return $ TestModule moduleName newModName

11 (addLinesNumbers words tests)

12 where

13 transformModule :: CurryProg -> ([ CFuncDecl], CurryProg)

14 transformModule
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15 = transformTests . renameModule1 newModName

16 . makeAllPublic

17 [...] -- add line numbers

Listing 5.5 shows a shortened version of genAndAnalyseModule. After
parsing the module to AbstractCurry (line 3), the original module gets also
broken down into lines and these into their �rst words (lines 4 and 5). A '�rst
word' is thereby de�ned as everything before the �rst white space of a line.
This list of words is later (line 11) used to add the line number information
to the tests. To determine the line number of a test in the original �le, the
�rst occurrence of the functions name in the list of words is used. This should
correspond to either the tests type signature or the test de�nition itself if no
signature is present (cf. Listing 5.1). Since type signature and test de�nition
should be directly adjacent (good coding style), this method of �nding the
line number should produce a usable result.

After parsing the source code, transFormModule creates the modi�ed ver-
sion of the input module (Listing 5.2). Besides returning the new module
de�nition (newMod) it also returns the de�nitions of each test included in the
module (rawTests). Transforming the module consists of several steps. We
have to make all functions public because execTests has to be able to exe-
cute them. How all functions can be transformed into public functions was
already discussed at the end of section 2.4.

The new module also has to be renamed(cf. Listing 5.1, line 1 and List-
ing 5.2 line 1). Renaming is done in two steps. renameModule1 simply re-
places the module name in the AbstractCurry representation of the module
header. This also enables us to use saveCurryCode to create a �le containing
the modi�ed code base. Because AbstractCurry uses quali�ed names through-
out, so it has to be replaced there as well. But replacing the module name
in the body of the module using AbstractCurry is rather cumbersome, as a
rule for nearly every AbstractCurry-data type has to be de�ned. So instead
CurryCheck replaces all other occurrences after the �le has been saved using
simple textual substitution (renameModule2, line 8).

The last step in transforming the module is done by transformTests. We
have seen in section 5.1 that only tests using partially applied functions have
to be modi�ed to use the fully applied function syntax.
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After transforming the module, CurryCheck has to analyse the tests to de-
termine of what kind they are (PropTest/AssertTest). This classi�cation is
done by classifyTests (line 9).

transformTests

transformTests's task is to transform tests that use partially applied func-
tions. We will refer to tests using partially applied functions as functional
tests from now on. To do this transformation we have to extract the tests
�rst (Listing 5.6, line 7) and then identify the functional tests (cf. Listing 5.1
lines 50-51,58-59).

Except for the alterations to the test functions the rest of the module re-
mains unchanged (cf. Listing 5.1 and Listing 5.2). Accordingly, the new
functions of the module consist of the modi�ed tests and the unchanged re-
maining functions (Listing 5.6, line 11; cf. Listing 5.2).

Listing 5.6: transformTests

1 transformTests :: CurryProg -> ([ CFuncDecl], CurryProg)

2 transformTests (CurryProg modName imports

3 typeDecls functions opDecls)

4 = (tests

5 , CurryProg modName imports typeDecls newFunctions opDecls)

6 where

7 (rawTests , funcs) = partition isTest functions

8
9 tests = map transformTest rawTests

10
11 newFunctions = tests ++ funcs

12
13 transformTest :: CFuncDecl -> CFuncDecl

14 transformTest f | isFunctionalTest f = transformTest ' f

15 | otherwise = f

16
17 isFunctionalTest :: CFuncDecl -> Bool

18 isFunctionalTest

19 = isFunctionalType . stripTCons . resultType . funcType

20
21 stripTCons :: CTypeExpr -> CTypeExpr

22 stripTCons (CTCons _ [t]) = t

23
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24 transformTest ' :: CFuncDecl -> CFuncDecl

25 transformTest ' (CFunc name arity visibility fType [rule])

26 = CFunc name newArity visibility newType [updateRule rule]

27 where

28 nestedType = stripTCons $ resultType fType

29 nestedArity = calcArity nestedType

30 newArity = arity + nestedArity

31
32 newType = foldr (∼>) (CTCons ("CurryCheck", "CTest")

33 [resultType nestedType ])

34 $ argTypes fType ++ argTypes nestedType

35
36 updateRule :: CRule -> CRule

37 updateRule (CRule ps rhs)

38 = CRule (ps ++ (genPVars nestedArity ))

39 (updateRhs rhs)

40
41 newVars = genEVars nestedArity

42
43 updateRhs :: CRhs -> CRhs

44 updateRhs (CSimpleRhs expr lDecls)

45 = CSimpleRhs (updateExpr expr) lDecls

46
47 updateExpr :: CExpr -> CExpr

48 updateExpr (CApply (CApply s@(CSymbol ("CurryCheck", op))

49 lhs) rhs)

50 | op `elem ` [" -==-", "<∼∼>", "<∼∼", "∼∼>"]
51 = CApply (CApply s (applyE lhs newVars ))

52 (applyE rhs newVars)

As all of this is done using AbstractCurry, we will look at some smaller
functions to further familiarize ourself with it. isTest is used to determine
if a function is a test or not. We stated earlier that all top-level functions of
result type CTest _ are categorized as tests. Therefore, we only have to look
at the result type of a function to ascertain this information.

isTest :: CFuncDecl -> Bool

isTest = checkType . funcType

where

checkType :: CTypeExpr -> Bool

checkType ct = case resultType ct of

(CTCons ("CurryCheck", "CTest") _) -> True

_ -> False
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We have already seen the de�nition of CFuncDecl during our short in-
troduction to AbstractCurry in section 2.4. funcType's result is the type
signature of its argument, and resultType yields the result type of a func-
tional type. We use these two functions to obtain a function's result type and
then compare it to CTest _.
As only functional tests have to be transformed, transformTest uses

isFunctionalTest to distinguish if a test has to be modi�ed (Listing 5.6,
lines 14-15). isFunctionalTest uses stripTCons . resultType . funcType

to obtain the inner type (a) of CTest a. isFunctionalType then yields
whether a is of a functional nature (lines 17-19).
If a test is functional test (cf. Listing 5.1, ll. 50-51,58-59), the actual

transformation is done by transformTest'. transformTest' updates the
arity of the new function (Listing 5.6, ll. 28-30), as the new test has a new
argument for each of the inner type's parameters (cf. Listing 5.1, ll. 50-51
and Listing 5.2, ll. 33-35). Since we lift all the inner parameters to the outer
function, we also have to update the test's signature (lines 32-34). CTest's
new inner type is the result type of its former inner type (lines 32-33) and all
the inner type's parameter types get appended to the tests existing arguments
(line 34).
Lastly we have to modify the tests rule (cf. Listing 5.1, l. 59 and Listing 5.2,

ll. 42-43). We have to add some variable patterns to the left side and then
modify the function calls on the right side to use these variables. ps ++

(genPVars nestedArity) (line 38) adds the new variable patterns to the left
side of the rule. updateRhs and updateExpr generate the new right hand side
of the test's rule, whereat he the only transformation is done by updateExpr,
which applies the functions to the added arguments (lines 51-52).

classifyTests

The test have to classi�ed in two categories: property based tests and asser-
tion based tests. Since only property based tests can have arguments, we can
use parsing to easily classify a test as property based if the test's type is of
a functional nature (cf. Listing 5.1, l. 54). Listing 5.7 lines 21-22 show this
partitioning. arity is used to get the tests arity. Because all functional tests
are eliminated at this stage if the arity is greater than zero, the test is of a
functional nature and expects generated arguments.
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All remaining tests (maybeProps) cannot be classi�ed through its type
signature, as these test can either be IO-tests, which are assertion based,
or direct comparison of values, for which we use the property based system
(cf. section 5.3).

Listing 5.7: classifyTests

1 classifyTests :: VerbosityMode -> String

2 -> [CFuncDecl] -> IO Tests

3 classifyTests m moduleName tests = do

4 bs <- mapIO isProp names

5 return $ makeProperties trivialProps

6 ++ classify maybeProps bs

7 where

8 isProp :: String -> IO Bool

9 isProp fname = do

10 system $ cmdTemplate fname

11 b <- readQTermFile "classify.txt" :: IO Bool

12 return $## b

13
14 cmdTemplate fname

15 = makeCmdQuiet ("kics2 :add CurryCheck :add " ++ moduleName

16 ++ " :eval CurryCheck.isProp " ++ fname ++ " :q")

17 m

18
19 names = funcNames maybeProps

20
21 (trivialProps , maybeProps)

22 = partition (\f -> arity f > 0) tests

23
24 classify :: [CFuncDecl] -> [Bool] -> Tests

25 classify [] [] = []

26 classify (x:xs) ( True:bs) = property x : classify xs bs

27 classify (x:xs) (False:bs) = assertion x : classify xs bs

28
29 property :: CFuncDecl -> Test

30 property f = PropTest (funcName f) (arity f) 0

31
32 assertion :: CFuncDecl -> Test

33 assertion f = AssertTest (funcName f) (funcType f) 0

34
35 makeProperties = map property
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Since we cannot evaluate AbstractCurry code directly, we use the modi�ed
module to evaluate all unclassi�ed tests and then classify them based on their
result. To do this evaluation, we use a function provided in the CurryCheck
module: isProp. isProp evaluates a test to its head normal form and then
determines whether it is assertion based or property based by analysing the
constructor. If IOAssertion or IOEqualAssertion is used the test is as-
sertion based and isProp writes False into the temporary �le classify.txt,
otherwise isProp writes True.

isProp :: CTest _ -> IO ()

isProp = writeQTermFile "classify.txt" . isProp '

where

isProp ' t = case t of

(IOAssertion _ _) -> False

(IOEqualAssertion _ _) -> False

_ -> True

To classify a single test in maybeProps classifyTests executes
CurryCheck.isProp test using the curry system and parses the result from
the temporary �le (lines 8-17). This way we get a list of booleans indicating if
the tests are property based or assertion based. It is then possible to generate
the list of classi�ed tests (lines 5-6, 24-35). Considering we do not know the
line numbers for the tests, we use 0 as value for now (lines 30 and 33).

5.4.2. Phase 2 - genTestModule

The second phase of CurryCheck is the generation of execTests.curry (cf.
Listing 5.3). This module contains the mapped tests of all modules and
the main function that runs the tests. execTests.curry is generated by the
genTestModule function.

genTestModule

genTestModule creates the execTests module. To do this, it maps the tests to
the underlying frameworks (Listing 5.8, line 4), generates the main function
(lines 5-6), and a list of imports (lines 10 and 11).

Listing 5.8: genTestModule

1 genTestModule :: VerbosityMode -> [TestModule] -> IO ()
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2 genTestModule m modules = saveCurryCode testProg

3 where

4 funcs = concatMap (createTests m) modules

5 mainFunction = genMainFunction moduleName

6 (concatMap tests modules)

7 moduleName = "execTests"

8 testProg = CurryProg moduleName imports []

9 (mainFunction : funcs) []

10 imports = ["Assertion", "CurryCheck", "EasyCheck", "System"]

11 ++ map newName modules

The list of imported modules is straight forward, as it contains all tem-
porary modules of the �rst phase (map newName modules), the CurryCheck
library, the frameworks CurryCheck is based upon (EasyCheck and Curry-
Test), and the System library for exitWith.

createTest

createTests is basically a map of createTest over the modules and as such
is not discussed any further here. The mapping of the tests to the un-
derlying frameworks is implemented by createTest. This function maps
all assertion based tests to Assertion a and all property based tests to
easyCheck/verboseCheck calls (cf. Listing 5.2 and Listing 5.3). Listing 5.9
shows a partial version of createTest which does not include most parts
relevant for assertion based tests. Both modi�cations are of a similar nature.
We will only discuss the mapping to EasyCheck in this section and therefore
omitted the irrelevant code from the listing.
In both cases, mapping to EasyCheck as well as mapping to CurryTest, a

new function is created. To make these names unique, the original test's name
supplemented by ''_moduleName�, whereat moduleName corresponds to the
module name that contains the original test de�nition. So in our example in
section 5.1 moduleName equals �Demo� (cf. Listing 5.2, l.17 and Listing 5.3,
l. 24). Complementing the function name is necessary as tests from di�erent
source modules might have the same name.

Listing 5.9: createTest

1 createTest :: VerbosityMode -> String -> String

2 -> Test -> CFuncDecl

3 createTest m origName moduleName test
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4 = uncurry (cfunc ("execTests", (genTestName $ getName test))

5 0 Public)

6 createTest '

7 where

8 createTest ' = case test of

9 (PropTest name arity _)

10 -> (ioType boolType , propBody name arity)

11 (AssertTest name t _)

12 -> (assertionType t, assertBody name)

13
14 extractInnerType (CTCons _ [t]) = t

15
16 genTestName (modName , fName) = fName ++ "_" ++ modName

17
18 msg = string2ac $ genMsg (getLine test) origName (getName test)

19
20 easyCheckFuncName :: String

21 easyCheckFuncName = case m of

22 Verbose -> "verboseCheck"

23 _ -> "easyCheck"

24
25 easyCheck arity = ("EasyCheck", easyCheckFuncName ++ show arity)

26
27 propBody :: QName -> Int -> [CRule]

28 propBody (_, name) arity = [simpleRule []

29 $ applyF (easyCheck arity)

30 [msg , makeProp arity ]]

31 where

32 makeProp n

33 | n == 0 = applyF ("CurryCheck", "makeProp")

34 [CSymbol (moduleName , name)]

35 | otherwise = CLambda (genPVars arity)

36 $ applyF ("CurryCheck", "makeProp")

37 [applyF (moduleName , name)

38 (genEVars arity )]

createTest' (Listing 5.9, lines 8-12) generates the function'ss type sig-
nature and the function's rules. As stated earlier, we will only focus on
PropTests. All versions of easyCheck and verboseCheck evaluate to IO

Bool, thus the type signature of all PropTests is exactly that: ioType boolType

(cf. Listing 5.3, ll. 24,35).

propBody generates the function's rules. More precisely, propBody gen-
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erates a single rule for the function as no arguments exist. In the case of
mapping to EasyCheck the test has to be transformed into a property (Prop)
and right the easyCheck/verboseCheck variation has to be called.

propBody determines the right function name using easyCheckFuncName

and the test's arity (Listing 5.9, lines 20-25, 29). As all variations of easyCheck
and verboseCheck take two arguments, a message string and a property, we
can generate the corresponding code with applyF (lines 29-30). applyF is a
function provided by the AbstractCurry library that takes a quali�ed function
name and a list of arguments to create the representation of the corresponding
function call (cf. Listing 5.3, ll. 19-22).

The transformation of the test into a property is done by calling
CurryCheck.makeProp. This function transforms a value of type CTest a

into a value of type Prop, whereat a cannot be a functional value. If the arity
of the test is 0 we can call CurryCheck.makeProp directly with the test as
argument (Listing 5.9, lines 33-34). If, on the other hand, the test has an arity
greater than zero, we have to create an extra lambda expression of the same
arity as the test with the fully applied test function as body (Listing 5.9, ll.
35-38; cf. Listing 5.3, ll. 27,32). genPVars and genEVars are two small helper
functions that generate a list of pattern variable and a list of corresponding
variable expressions, respectively.

genMainFunction

The core of the generated main function are the calls to two functions:
execAsserts and execProps. These two functions are provided by the Cur-
ryCheck library and are listed below.

execAsserts :: String -> IO Int

execAsserts filename

= system $ "currytest " ++ filename

execProps :: Int -> [IO Bool] -> IO Int

execProps failed ps = do

x <- sequenceIO ps

if (failed /= 0) || not (and x)

then return 1

else return 0
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Since CurryTest already provides a way to automatically execute all associ-
ated tests in a module, execAsserts simply executes the currytest command
with the given filename as parameter.

execProps takes an existing exit code and a list of IO-actions. It then
executes all actions and calculates a new exit code based on the previous one
and the results of the IO-actions.

Listing 5.10: genMainFunction

1 genMainFunction :: String -> Tests -> CFuncDecl

2 genMainFunction testModule tests

3 = CFunc (testModule , "main") 0 Public typeExpr body

4 where

5 typeExpr = ioType unitType -- IO ()

6
7 body = [simpleRule [] expr]

8
9 expr = CDoExpr $

10 [ CSPat (cpvar "x") execAsserts

11 , CSPat (cpvar "x1")

12 $ applyF ("CurryCheck", "execProps")

13 $ (cvar "x") : [testExprs]

14 , CSExpr $ applyF ("System", "exitWith") [(cvar "x1")]

15 ]

16
17 testExprs = list2ac $ map makeExpr

18 $ filter isPropTest tests

19
20 isPropTest (PropTest _ _ _) = True

21 isPropTest (AssertTest _ _ _) = False

22
23 makeExpr :: Test -> CExpr

24 makeExpr (PropTest (modName , name) _)

25 = constF (testModule , name ++ "_" ++ modName)

26
27 execAsserts :: CExpr

28 execAsserts = applyF ("CurryCheck", "execAsserts")

29 [string2ac testModule]

execTests's main function (cf. Listing 5.3, ll. 8-15) is generated in
genMainFunction. The body of the generated function is a do-expression
with three statements. First
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CurryCheck.execAsserts gets executed and the result saved to x (List-
ing 5.10, lines 10, 27-29). Afterwards execProps is executed and the result
saved to x1 (lines 11-13,17-25). The third statement terminates the program
with the exit code speci�ed by x1 (line 14).
To provide execProps with a list of IO-actions containing all EasyCheck

tests we one again �lter the list for property based tests (line 18-21). makeExpr
then transforms each property based test into an AbstractCurry representa-
tion of the function calls to the generated test functions (cf. section 5.4.2,
createTests). This generated list in then transformed into its AbstractCurry
representation itself by list2ac (Listing 5.10, line 17).

5.4.3. Phase 3 - execTests

The third and last phase is the easiest to implement. All that remains to be
done, to run the tests, is executing execTests's main function. To do this
currycheck starts a system call running the curry system (Listing 5.11).

Listing 5.11: execTests

execTests :: VerbosityMode -> IO Int

execTests m

= system $ makeCmdQuiet "kics2 :l execTests :eval main :q" m
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This chapter tries to point out some improvements that might be useful to
implement in the future. We will focus on two di�erent aspects that might
be worth a more careful examination: porting CurryCheck to PAKCS and
using type-classes in the implementation of CurryCheck.

6.1. PAKCS support

As of now CurryCheck is only supported by the KiCS2 compiler because
the underlying EasyCheck implementation uses features unique to KiCS2. In
detail, EasyCheck uses KiCS 's ability to generate and return a search tree
for a given expression. EasyCheck uses this as part of its valuesOf function
that returns a list of all values an expression can assume.

It might be worth to port CurryCheck to PAKCS. To port CurryCheck
KiCS2 's SearchTrees would have to be manually generated. As we know all
the used data types when analysing the module and can obtain the data types'
de�nitions, speci�cally their AbstractCurry representations. It should be pos-
sible to generate a set of functions that create the necessary SearchTrees.

6.2. Type-classes

Currently neither PAKCS nor EasyCheck support type-classes. Both com-
pilers, on the other hand, have begun implementing them. When they are
�nished it might be a good idea to use type-classes in the implementation of
CurryCheck.

It already exists a version of EasyCheck named curry-test that uses type-
classes[1]. Although curry-test currently uses some libraries speci�c for the
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Münster Curry Compiler1, it could then be ported to KiCS2 and PAKCS
which share almost all libraries.
curry-test introduces the Arbitrary type-class, which introduces one func-

tion: arbitrary :: () -> a. As the name suggests arbitrary non-determi-
nistically yields an �arbitrary� value of type a. All types of which curry-test
has to generate values must provide an instance of Arbitrary. Although this
seems restrictive at �rst, it is actually quite useful. It gives the user of the
library the chance to specify a more useful implementation than completely
arbitrary generation.
Let us look at an example. When designing and testing a data type that

implements sets Set a, most test will probably depend on valid sets as input.
When generating a set with EasyCheck there is no way to prevent duplicate
values in the generated set. Consequently, we have to use ((===>)) in all
tests that depend on valid sets as input parameters. With curry-test, on the
other hand, it is possible to specify our own instance of Arbitrary for Sets.
This instance can then ensure that only valid sets are being generated.
To prevent the user from having to implement instances of Arbitrary for

all his data types, it is possible to let CurryCheck generate default instances
if none is de�ned by the programmer. We can use the data type's de�nition
and AbstractCurry to generate these default instances. The actual imple-
mentation of arbitrary is straight forward. Each of the type's constructors
correlates to one alternative and the arguments of the constructors are gen-
erated using arbitrary. If the data type uses type parameters, they must
instantiate Arbitrary as well. The following listing shows an example.

data Maybe a = Nothing | Just a

instance Arbitrary a => Arbitrary (Maybe a) where

arbitrary () = Nothing ? Just (arbitrary ())

1e.g. the Random libraries are di�erent
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7. Conclusion

To draw a conclusion, will revisit the list at the end of section 1.2 one by one
and determine whether the individual goals are met by CurryCheck.

1. simple syntax

If the syntax is simple or not is of course a rather subjective point.
Let us try to make an objective analysis anyway. Although there are
some limitations in the provided syntax, e.g. functional tests can only
be used if the test operator is used directly on the right hand side
of the test de�nition (cf. section 4.8), CurryCheck tries to provide a
concise interface. All operators CurryCheck provides to de�ne tests are
used in a similar manner, there is no need to distinguish between non-
deterministic and deterministic functions, and the operators themselves
are nearly identical to EasyChecks operators, which helps people already
familiar with EasyCheck. In summary it should be fair to assume that
CurryCheck meets this goal.

2. tests are valid Curry code

As shown in chapter 4 and chapter 5, all CurryCheck tests are written
directly in Curry.

3. provides all features of existing frameworks

We discussed the porting of EasyCheck tests and CurryTest tests in
detail in section 4.9 and section 4.10, respectively. In these two sections
it was shown how the tests can be rewritten using CurryCheck.

4. tests de�ned inside the same module

Part of this goal was it, to use this property to generate more useful
error messages in the case of a failure. All CurryCheck tests can be
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written in the same module as the functions they test and in fact is
actually encouraged, as CurryCheck automatically includes the tests
module and line number in the test output like proposed in section 1.2.

Also related to this goal, was the desire to keep the module's interface
free of tests in contrast to CurryTest. Since no tests have to be exported
for CurryCheck to �nd them, this goal is met as well.

5. automatic test detection and execution

We have shown in great detail in chapter 5 how CurryCheck analyses
and copies the whole module to detect all contained tests without the
need to export the test functions. In the same section we have also seen
how CurryCheck then creates the necessary infrastructure to create all
the test previously found.

We can see on this list that the goals set in section 1.2 were met, but there
is also still room for improvement. Especially the missing support for PAKCS
(section 6.1) is something that should be implemented to make CurryCheck
truly useful.
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A. Installation

CurryCheck 's source code can be found here1. The framework comes with its
own make�le to install the currycheck tool and the libraries. A simple call to
make install will run the installation process.
When make install is called it �rst compiles the currycheck tool and

then copies the resulting executable to the compiler's installation directory
(as speci�ed by Distribution.installDir into the bin directory. If, for ex-
ample, installDir is /opt/kics2, currycheck gets copied into /opt/kics2/bin.
The installation then proceeds to copy TreeSearchTraversal, EasyCheck, and
CurryCheck to installDir/tools/currycheck.
As currently only KiCS2 is supported, the make�le expects kics2 in the

users PATH. If this is not the case or multiple versions of KiCS2 are installed,
a speci�c version can be speci�ed by providing the complete path of the
compiler as parameter of make:

make install CURRY=/opt/kics2/bin/kics2

To use CurryCheck in a project execute currycheck �init once inside
the directory in the tool will be run. This command will copy the installed
modules needed by CurryCheck to the current working directory and allows
CurryCheck to �nd them.

1https://git.informatik.uni-kiel.de/jpb/master-thesis
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