
Programming Languages and Compiler Construction
Department of Computer Science
Christian-Albrechts-University of Kiel

Bachelor Thesis

Design and Implementation of Remote

Function Invocation with Template

Haskell

Jan-Patrick Baye

SS 2013

Advised by:

Prof. Dr. Michael Hanus

Dipl.-Inf. Fabian Skrlac

Statutory Declaration

I hereby declare that I have authored this thesis independently and that I have only used
sources listed in the bibliography, and that I have explicitly marked all material which
has been quoted either literally or by content from the used sources. The thesis in this
form or in any other form has not been submitted to an examination body and has not
been published.

date Jan-Patrick Baye

Contents

1. Introduction 2

2. Preliminaries 4

2.1. Template Haskell . 4

3. Implementation 6

3.1. Basic concept . 6
3.2. Protocol . 7
3.3. Monomorphic functions . 8
3.4. Polymorphic functions . 8
3.5. Client framework . 12
3.6. Generating remote functions . 12

3.6.1. Stub signature . 13
3.6.2. Stub generation . 14

3.7. Server framework . 16
3.8. Server functions . 16

4. Conclusion 19

4.1. Performance . 19
4.2. Usage . 20
4.3. Code Base . 20
4.4. Polymorphic Functions . 20
4.5. Conclusion . 21

A. Installation and usage 22

A.1. Installation . 22
A.2. Testing the installation . 22
A.3. Usage . 22

B. Examples 24

B.1. Specifying RFI functions . 24
B.2. Starting a server . 25
B.3. Using remote functions . 25
B.4. A simple chat . 26

Bibliography 27

iii

Listings

2.1. lambda function and abstract syntax tree 4

3.1. stub signature . 6
3.2. using a remote functions with multiple servers 6
3.3. genRFI signature . 6
3.4. protocol layout . 7
3.5. parameter (de-)serialization . 7
3.6. MonoRep and simple Mono type class . 8
3.7. Mono type class . 9
3.8. Mono instance examples . 9
3.9. generic Mono instance for Either . 9
3.10. generate Mono class instances . 10
3.11. generate the Mono type constraints . 11
3.12. generate toMono and fromMono for an Mono instance 11
3.13. query function . 12
3.14. simple type signature . 13
3.15. stub signature . 13
3.16. stub de�nition . 14
3.17. generate stub . 15
3.18. remote_add example . 16
3.19. generate argument variables . 16
3.20. generate the tuple's type . 17
3.21. creating the server function's body . 17
3.22. generate match . 18
3.23. server code for add . 18

4.1. a function that would bene�t from lazy evaluation 19

B.1. RFI functions (examples/usage.hs) . 24
B.2. server (examples/server.hs) . 25
B.3. client (examples/client.hs) . 25
B.4. simple chat application (examples/chat.hs) 26

1

1. Introduction

This thesis examines the development of an Haskell framework for Remote Function
Invocation (RFI) with Template Haskell. The main motivation are resources that are
only available on speci�c machines. We want to provide a way, that one can write the
functions to work with these resources, as though they are executed on the same machine
and then specify them to be remote accessible functions. Our framework then should
generate an application programming interface (API) that provides two sets of functions:
One to provide a server, listening for function calls and executing them and the other
with client functions, which connect to the server and send it the requests. In Figure 1.1
we see a simple example of what we want to achieve. In this example the log function
should be executed on the server, but we want to make it callable from client machines.
For this our approach generates the remote_log function.
Another inspiration for RFI was Java Remote Method Invocation (Java RMI)[7]. Es-

pecially in with respect to its simplicity and basic layout. Java RMI allows it, that the
programmer does not need to do anything with respect to serialization (except make sure
everything he uses is serializeable). A main goal of RFI is to replicate this simplicity in
Haskell.
In the next chapter we will introduce Template Haskell, a compile-time meta-program-

ming extension of Haskell, which is used to implement RFI. After that we will discuss
the implementation. First we will look at the basic concept we use and our protocol to
send our functions calls over the network. Then we take a look at monomorphic and
polymorphic functions, what the problems are if we want to provide a generic way to
use them over the network and how we solved them. At least we show how we generate

Figure 1.1.: Concept

2

1. Introduction

the client and server code and what interface our module will create. In our last chapter
we want to discuss our solution. What it can and can not do and why not. We will
also compare our approach with a similar work from Je� Epstein, Andrew P. Black and
Simon Peyton-Jones.

3

2. Preliminaries

2.1. Template Haskell

Template Haskell is a part of GHC since version 6. It provides a way to do type-safe
compile-time meta-programming and is an extension of Haskell 98. Template Haskell
allows us to manipulate the code at compile-time [5]. This is done with abstract syntax
trees. These are a representation of Haskell code with Haskell data types. We can
convert concrete code to it's syntax tree representation (reify) work with it and then
convert it back to concrete code (splice back). This way we can manipulate existing code
or even create new code at compile-time. Besides the data types for the syntax trees two
functions are relevant for us: mkName and reify.
mkName :: String -> Name is used to generate a capturable name, whereas reify ::

Name -> Q Info queries the compiler about information about the Name. If we have
a function (e.g. add :: Int -> Int -> Int) and its name as a string ("add") we can use
these two functions to obtain information about add. We �rst generate the Name with
mkName and then query the compiler for information about it with reify. If we do this
for a function the resulting Info variable contains the type signature and the de�nition
as abstract syntax trees. In Listing 2.1 we see a lambda function and the corresponding
syntax tree. The LamE constructor, which represents a lambda function, takes two
arguments, a list of patterns and an expression. In the example the list consists only of
a single element representing the x. In this code x_1 is of type Name and we can see
how the same name variable is used with di�erent constructors in this syntax tree. First
with VarP to create a pattern variable and then with VarE to use the variable in the
expression. If we had obtained this syntax tree with reify we could simply change the
tree, for example change the operation to decrement x. The Name of the − operation can
be obtained with (mkName "−") and then we only have to substitute the GHC.Num.+.
For more information on the abstract syntax trees see [4].

\x -> x + 1

LamE [VarP x_1]

(InfixE (Just (VarE x_1))

(VarE GHC.Num .+)

(Just (LitE (IntegerL 1))))

Listing 2.1: lambda function and abstract syntax tree

To use Template Haskell the Glasgow Haskell Compiler (GHC) version 6 or higher has
to be used. Also a compile time �ag (TemplateHaskell) has to be set for every module that
uses it. One drawback of generating code with Template Haskell is that you can not use
the generated or modi�ed functions in the same module that you create or modify them

4

2. Preliminaries

in, respectively. We will use Template Haskell for two tasks, we will query the compiler
with reify, to get information about the functions we have to generate RFI-code for. We
then use Template Haskell to generate the code we need.

5

3. Implementation

3.1. Basic concept

To make a function remotely callable we have to generate two functions: one function
for the client side and one function for the server side. The client function we will call
client stub or remote function. Functions the user wants to use with RFI we will call
RFI functions. The client stub has to have the same arguments as the original function,
send the serialized arguments to the server and �nally de-serialize the result. Because
the client has to send the arguments over the network the result is wrapped in Haskell's
IO monad. This is where the function signature di�ers from the original function. There
is one exceptions to this rule, if the function we make remote callable already is an IO
function, we do not have to wrap the return type. To make the stubs more �exible they
also take a RFIHandle argument to specify the server that should be used. This enables
us to let the client connect to multiple servers and use the same client stub to call the
function on any one of them. (This principle is shown in Listing 3.2.)

inc :: Int -> Int

remote_inc :: RFIHandle -> Int -> IO Int

Listing 3.1: stub signature

The server side function has to de-serialize the arguments and then apply the original
function. The result then has to be serialized and send back to the client.
In addition there has to be one function for each side to handle the connection. The

client version has to establish a connection to a server and then provide the RFIHandle
to be used by the client stubs. The server version has to both accept connections from
clients and then accept their messages and invoke the corresponding functions.

% server1 : RFIHandle (connection to a server)

% server2 : RFIHandle (connection to another server)

i <- remote_inc server2 (5 :: Int)

i <- remote_inc server1 i

% i = 7

Listing 3.2: using a remote functions with multiple servers

To make this work, we have to provide an interface for the programmer to mark a
function for RFI usage (Listing 3.3). The genRFI function takes a list of function names
as argument. For these functions our module then tries to generate the necessary code
in the form of abstract syntax trees.

genRFI :: [String] -> Q [Dec]

6

3. Implementation

Listing 3.3: genRFI signature

3.2. Protocol

First we have to de�ne a protocol for the communication between server and client.
For the underlying network communication TCP/IP was chosen. Also between function
calls there is not really a need for a continuing connection TCP was chosen over UDP,
because TCP already handles lost packets. If UDP would be used, this would have to be
implemented manually, otherwise a deadlock might occur on client side when a packet is
lost because the called function would not return.
On the application layer two things have to be considered: �rst how to serialize the

arguments and return value and second how to encode which function the client wants
to call. To serialize the data we choose the show and read methods, which produce a
simple string representation of the data and works for every basic data type and makes
debugging easier, because it is still readable. The string representation is then send over
the network and as the delimiter for di�erent function calls the newline is used. So every
line is one function call with its arguments.

| functionname | space | (arg1 , arg2 , ..., argn) | \n |

Listing 3.4: protocol layout

To identify the called function we simply use its name as a string. The client puts
this in front of the serialized arguments. As delimiter we use a space. Haskell function
names can not contain any whitespace. Because of this we can safely split the string at
the �rst occurrence of a space, in this way obtaining the function name as the �rst and
argument representation as second part. To represent the arguments we use an n-tuple,
where n is the number of arguments. The �rst argument of the function becomes the
�rst element and the last argument the n-th element. The whole tuple is then serialized
with show. On the server we can then de-serialize the tuple with read and obtain the
arguments with pattern matching.

add : Int -> Int -> Int

add a b = a + b

remote_add : Int -> Int -> IO Int

remote_add a b = read $ send ("add" ++ " " ++ (show (a, b)))

server_add : String -> String

server_add s = let (a, b) = read s :: (Int , Int)

in show (add a b)

Listing 3.5: parameter (de-)serialization

In Listing 3.5 we see the basic layout of a client stub for a binary function add. To
simplify this code the RFIHandle argument was omitted. Send represents a function that
sends its argument to the server and returns the answer. The listing also shows the basic

7

3. Implementation

layout of the server function. The function mapping was left out, which we will cover
later (reference). The argument string is parsed into a tuple to obtain the parameters
and then the original function is called. Because this part has to be generated with
Template Haskell we also have to provide the exact type of the tuple for the compiler to
use the right read to parse the string.

3.3. Monomorphic functions

Monomorphic functions have no type variables in its signatures and as long as every
argument type and the return type implements the type classes Show and Read it is
possible to serialize the arguments on the client side, de-serialize them on the server
side apply the function and send the result back to the client. Far more interesting are
polymorphic functions, which we will discuss next.

3.4. Polymorphic functions

To provide a way to use polymorphic functions over the network, we have to have some
way of serializing the polymorphic arguments. The problem with polymorphic arguments
is, that although we know the concrete type on the client side, we do not know it at all
on the server side. Thus we could easily serialize the data, but not de-serialize it. One
way to provide this information is to encode the data type in the message, but it is also
possible that the server does not even know that data type, so it would still be unable
to reconstruct the data. To provide at least some support for polymorphic functions we
use a new type (MonoRep) to represent all polymorphic arguments. We therefor expect
every data type, that is to be used with polymorphic functions, to provide a way to
convert it into MonoRep and back again. To formalize this we can use a new type class
Mono (Listing 3.6).

newtype MonoRep = Mono String

deriving (Show , Read)

class Mono a where

toMono :: a -> MonoRep

fromMono :: MonoRep -> a

Listing 3.6: MonoRep and simple Mono type class

If we take a look at length :: [a] -> Integer, we see that to use this function over the
network we somehow have to serialize the list, but also have to preserve the list structure.
So we have to convert the list of a into a list of MonoRep. In this case we could simply
use map to convert the list. But let us also take a look at another common data type:
Either. In the case of Either we could also have a type like Either a Int. If the function
gets an argument constructed with Left we have to convert Left 's argument to MonoRep.
On the other hand, if Right is used we do not want to convert the Int value. To do
this with our Mono class we have to generate very speci�c conversion code to map the
di�erent data types. It would be better if our Mono class could handle it, so that if we

8

3. Implementation

have an argument x of type Either a Int we can call toMono x, which then converts x to
Either MonoRep Int.

The Mono class

We can realize this requirement using multi-parameter type classes. Simply speaking
these enable us to de�ne a relation between multiple types. In our case we can modify
our type class to take two parameters and change the type of toMono and fromMono to
convert between these two types. The modi�ed class is shown in Listing 3.7.

class Mono a b where

toMono :: a -> b

fromMono :: b -> a

Listing 3.7: Mono type class

Let us �rst look at how we can use this to implement our basic case for converting
something to MonoRep and back again. If we want to convert a type a to MonoRep
we simply have to de�ne an instance of Mono a MonoRep. Since we already use show
and read to serialize the arguments of monomorphic functions, we can use them also to
convert most data types to MonoRep. For every type that implements the type classes
Read and Show we can provide a default instance of Mono (Listing 3.8).

instance (Show a, Read a) => Mono a MonoRep where

toMono = Mono . show

fromMono (Mono str) = read str

instance (Show a, Read a) =>

Mono (Either a Int) (Either MonoRep Int) where

toMono (Left x) = Left (toMono x)

toMono (Right x) = Right (toMono x)

fromMono (Left x) = Left (fromMono x)

fromMono (Right x) = Right (fromMono x)

Listing 3.8: Mono instance examples

This basic case can now be used to implement the more complex cases like our Either
example. Remember we tried to convert Either a Int to Either MonoRep Int. If we
look at Either 's constructors separately, we notice that we just have to provide a way to
convert between a and MonoRep for the Left constructor and between Int and Int for
the Right constructor. For types that implement Show and Read we already have de�ned
the �rst conversion. What is left is a conversion between Int and Int. Since we do not
want to change anything with this conversion, we can simply use the identity function
(id) and provide an instance of Mono: Mono Int Int. Listing 3.8 shows the resulting
implementation. We can further generalize this implementation by using the Mono type
class itself as type constraints. If we want to convert between Either a b and Either c d,
we can do this in the same way as before, if instances for Mono a c and Mono b d exist.
The resulting implementation for Either is shown in Listing 3.9.

instance (Mono a c, Mono b d) =>

Mono (Either a b) (Either c d) where

9

3. Implementation

toMono (Left x) = Left (toMono x)

toMono (Right x) = Right (toMono x)

fromMono (Left x) = Left (fromMono x)

fromMono (Right x) = Right (fromMono x)

Listing 3.9: generic Mono instance for Either

Generating Mono class instances

Now that we have seen how we can create an abstractMono class instance for an algebraic
data type and seen that for every built-in data type like Int or String we have to de�ne
an instance of Mono a a to use them with RFI we want to generate the necessary
Mono instances with Template Haskell. First let us analyze what we have to generate.
For the basic data types we only have to generate a simple instance with toMono and
fromMono as aliases of id. For algebraic data types we have to do a little more. As
the Either example shows, we have to generate one toMono and fromMono version for
each constructor and then call toMono or fromMono for each argument, respectively. For
this we also have to add the Mono type constraints as shown in Listing 3.9. Listing 3.10
shows the basic layout of genMonoInstances. Note that we generate instances for n-tuples
separately because they are represented with Template Haskell's TupX constructors, but
the basic idea of how to do it is the same, although we only need one pattern per function
(toMono, fomMono).

genMonoInstances :: [String] -> Q [Dec]

genMonoInstances [] = return []

genMonoInstances names =

do

types <- createFunTypeList names

let typelist = filter (\x -> not $ show x == "GHC.Types.IO")

$ removeDuplicates $ concat

$ map listOfDataTypes types

let tupletypes = removeDuplicates $ concat

$ map listOfTupleTypes types

infos <- getInfoList typelist

return $ (map genMonoInstance $ zip typelist infos) ++

(map genMonoTupleInstance tupletypes)

Listing 3.10: generate Mono class instances

To generate all instances we �rst have to �nd out what data types are used. For
this we obtain a complete list of all RFI function signatures from the compiler. These
signatures can be parsed to get a list of all used data types. Since a single data type
might be used multiple times, we have to remove duplicates from that list or we would
produce a compile time error, when we try to generate multiple instances of the same
type. We also have to remove the IO monad from that list because it is a special case and
we do not serialize it. With a complete list of the used types we can obtain additional
information about these types, for example a complete list of all constructors. With all
these information the only thing left is to actually generate an instance for each data
type. This is done by genMonoInstance, which we will discuss next.

10

3. Implementation

GenMonoInstance basically has three cases, the �rst two map against simple data type
or type aliases (e.g. String) and simply generate an instance, where both toMono and
fromMono are an alias for id. These two cases we will not look at any further. The third
case maps against the algebraic data types. From the abstract syntax tree representation
of the data types we can extract two pieces of information. How many di�erent type
variables are used and the format of the di�erent constructors.
Let us take a look at how we generate the Mono type constraints. When we look

back at Listing 3.9, we see that for every type variable used in the de�nition we have to
generate a Mono type constraint with a new type variable. For this we generate two lists
of type variables called a1, ..., an and b1, ..., bn to represent the types in the constraints.
We can combine the two list with zip to a single list of pairs and Listing 3.11 shows how
to generate the type constraints from that list.

genMonoConstraints :: [(Type , Type)] -> Cxt

genMonoConstraints [] = []

genMonoConstraints ((a, b) : xs) =

ClassP (mkName "Mono") [a, b] : genMonoConstraints xs

Listing 3.11: generate the Mono type constraints

We will skip how to generate the rest of the type signature and look at how to create
the toMono and fromMono functions for an instance. Because those two functions are
identical except for the small di�erence of the function name and which function they
have to call for each argument, we can use a single function to generate the Clauses for
both cases. Listing 3.12 shows how we generate these functions. genFun takes a list of
constructors as argument and the generates the two functions. Since we have to create
one Clause for every constructor we can use map to generate the list of Clause's needed
for the FunD constructor.
The basic idea of genClause is to distinguish between two types of constructors. Con-

structors with and without arguments. The �rst pattern matches against the second
type of constructor and the resulting Clause is accordingly simple. Since no arguments
are involved, all we have to do is call the same constructor.
The second case is more interesting. We can extract a list of variable names from

the constructor de�nition. With this list in hand, it is possible to create the correct
constructor pattern (ConP) and then recreate the constructor call while wrapping each
argument within the function f, which in our case is either fromMono or toMono. Gen-
ConCall does exactly that. To generate the constructor call it has to create a chain of
AppE expressions, which are similar to the AppT expression we already know from the
type signatures.

genFuns :: [Con] -> [Dec]

genFuns xs = (FunD (mkName "toMono")

$ map (genClause $ mkName "toMono") xs)

: [FunD (mkName "fromMono")

$ map (genClause $ mkName "fromMono") xs]

genClause :: Name -> Con -> Clause

genClause _ (NormalC name []) = Clause [ConP name []]

(NormalB (ConE name))

11

3. Implementation

[]

genClause f (NormalC name xs) =

let varnames = map (\(_, (VarT n)) -> n) xs

in Clause [ConP name (map (\x -> VarP x) varnames)]

(NormalB $ genConCall varnames f (ConE name))

[]

Listing 3.12: generate toMono and fromMono for an Mono instance

With this we can generate instances for the basic data types, algebraic ones and
n-tuples. Lists are also supported, but an instance for lists is statically de�ned in
Monomorph.hs, since it works for nested lists.

3.5. Client framework

For the client side we provide one function to initiate a connection with a server and for
every function the programmer wants to use with RFI we generate one remote function
as speci�ed before in section 3.1. The connection to the server is established using the
startRFI_ function, which takes a host name or IP-address and a port number and then
returns the corresponding RFIHandle. This handle can than be used as argument for
the remote functions. Because we use Template Haskell, the programmer has to de�ne
the RFI functions in an own module and there call genRFI. To re-export startRFI_
from that module, a wrapper function (startRFI) is generated with Template Haskell.
Because, if everything of that module is exported by default, all generated functions are
also exported and thus the programmer can use startRFI. To send to and receive data
from the server the query function (Listing 3.13) is used.

query :: (Show x) => String -> RFIHandle -> x -> IO String

query name h p = let handle = sHandle h

in (hPutStrLn handle $ name ++ " " ++ (show p))

>> hGetLine handle

Listing 3.13: query function

Query takes three arguments, the name of the original function as identi�er as speci�ed
in the protocol (3.2). The RFIHandle specifying the server and the functions arguments
already joined as tuple. It then assembles the message according to the de�ned protocol
and sends the request to the server. Finally it returns the servers answer. Thus this
function is used by every remote function to communicate with the server. It is important
to note that query does not de-serialize the return value, this has to be done by the calling
function.

3.6. Generating remote functions

For each RFI-function we have to generate one remote function with its corresponding
header. To generate the signature we �rst need the original function's type signature.
We then can obtain all other information we need from the signature. For example the
number of arguments, which we need to generate the n-tuple. We can also check if we

12

3. Implementation

are able to use that function with Remote Function Invocation. This includes whether
the function uses type constraints or is a higher-order-function, which we can not use.

3.6.1. Stub signature

Because of the transformation to monomorphic functions on the server side it is essential
to generate a complete function signature for the remote function. Otherwise the compiler
does not know which toMono and fromMono to call.

Int -> IO Integer

AppT (AppT ArrowT (ConT Int)) (AppT (ConT IO) (ConT Integer))

Listing 3.14: simple type signature

Listing 3.14 shows the signature of an simple IO function and its corresponding repre-
sentation using Template Haskell's syntax trees. Albeit a little simpli�ed because instead
of the type names (Int, Integer and IO) Names would be required. These can be ob-
tained using mkName("typename"). The two important parts in this representation are
the constructors AppT and ArrowT. AppT connects two Type objects and ArrowT rep-
resenting the '->' connection. In this way we can construct a type signature as a tree of
AppT constructs, the second argument being applied to the �rst one. This way ArrowT
can be seen as a binary function, so AppT ArrowT Int correlates to Int ->, thus still
missing the second argument. In this case AppT (ConT IO) (ConT Integer).

-- generate the stubs type

-- put the RFIHandle in front of the original signature

-- (polysig_help does the rest)

polysig :: Type -> Type

polysig t | isHigherOrderFunc t =

error (name ++ ": higher -order -functions are not possible with RFI")

polysig (ForallT a [] t) =

let names = map (\(PlainTV a) -> a) a

constraints = map (\x -> ClassP (mkName "Mono")

[VarT x,

ConT (mkName "MonoRep")])

names

in ForallT a constraints (AppT (AppT ArrowT

(ConT (mkName "RFIHandle")))

$ polysig_help t)

polysig (ForallT _ _ _) =

error (name ++ ": type constraints are not possible with RFI")

polysig t = AppT (AppT ArrowT

(ConT (mkName "RFIHandle")))

$ polysig_help t

-- add the IO to the return type

-- or if it already is an IO function , leave the return type unchanged

polysig_help :: Type -> Type

polysig_help (AppT (AppT ArrowT t1) t2) = AppT (AppT ArrowT t1)

$ polysig_help t2

polysig_help t@(AppT (ConT a) x) | (showName a) == "GHC.Types.IO" = t

13

3. Implementation

polysig_help x = AppT (ConT (mkName "IO")) x

Listing 3.15: stub signature

In Listing 3.15 we see the code that generates the stub's signature. If we remember
the basic idea described in 3.1 the signature has to be modi�ed at two places. First
an extra argument of type RFIHandle has to be supplemented and second if it is not
already an IO function the return type has to be wrapped inside the IO monad. The rest
of the signature remains unchanged. As mentioned before Haskell code is represented
in the abstract form of syntax trees using Haskell data types in Template Haskell. The
polysig function takes the representation of the original function's signature and returns
the modi�ed signature of the client stub. Two of the patterns (the �rst and third) check
if the function is a valid RFI function, meaning that it is not a higher-order-function or
requires type constrains. The de�nition of isHigherOrderFunc is left out in the listing. It
uses the type signature and pattern matching to search for function signatures embedded
in the signature and returns True if it �nds any otherwise it returns False. The second
pattern matches polymorphic functions. The �rst two arguments of ForallT being the
type variables and the type constraints and the third the argument and return types. In
this case we �rst use the list of type variables (a) to obtain the Names and then generate
the needed Mono class constraints. Polysig_help is used to wrap the function's return
type into the IO monad if it is not already an IO function. We return the modi�ed
signature and also add the RFIHandle argument at the front. The last pattern matches
monomorphic functions, so we do not have to do as much as for polymorphic ones. We
simply prepend the RFIHandle argument and use polysig_help again for the return type.
Polysig_help has to modify the return type. As we have seen in Listing 3.14 the signatures
are represented in a tree like manner using the AppT constructor. We have also seen
that the second parameter can always be seen as an parameter to the �rst. Thus we
can deduce that at the top level the function signatures must map against AppT (AppT
ArrowT t1) t2, where t1 represents the function's �rst argument type. In this way we
can construct the new signature by leaving the �rst part unchanged and simply modify
t2 if necessary. We achieve this with a recursive call to polysig_help. When we reach the
return type it is either already of type IO _, which the second pattern matches and in
which case we leave the type unchanged, or it has any other type and we wrap it in the
IO monad. In either case our modi�ed function signature is complete.

3.6.2. Stub generation

For every RFI function we have to generate a remote function. This function has to join
all its n arguments into a single n-tuple, send the request to the server with query and
the de-serialize the return value.

FunD stubname [Clause [VarP handle]

(NormalB (genStub (siglist monoSig) 0 []))

[]]

stubname handle = result_of_genStub

14

3. Implementation

Listing 3.16: stub de�nition

In Listing 3.16 the basic stub de�nition is shown. FunD de�nes a new function with
name stubname. The list of Clauses represents multiple possible function de�nitions.
In this case only one function de�nition is created. The function takes one argument
(handle), which is necessary for all remote functions and the functions body is created
by genStub. Because the number of arguments for the stub is de�ned by the original
function (plus the one argument for the handle) and not �xed for all stubs, genStub
generates an appropriate chain of lambda expressions.

genStub :: [Type] -> Int -> [Exp] -> Exp

genStub [t] n acc =

let parse_arg = mkName "p"

in DoE [BindS (VarP parse_arg)

(AppE (AppE (AppE (VarE (mkName "query"))

(LitE (StringL name)))

(VarE handle))

(TupE (reverse acc))),

LetS [ValD (VarP (mkName "r"))

(NormalB (SigE (AppE (VarE (mkName "read"))

(VarE parse_arg))

(parseSig t)))

[]],

NoBindS (AppE (VarE (mkName "return"))

(AppE (VarE (mkName "fromMono"))

(VarE (mkName "r"))))]

genStub types n acc =

let x = (mkName $ "x" ++ (show n))

in LamE [VarP x] (genStub (tail types)

(n + 1)

$ (SigE (AppE tomono (VarE x))

(head types)) : acc)

Listing 3.17: generate stub

The genStub function takes three arguments, a list of types of the arguments and as
last element the type of the return value, a counter to create distinct local variables and
a list of expressions. This list is used as an accumulator to store the already generated
code parts. Looking back at our protocol (3.2) we remember that we have to put all
n arguments of the function into one n-tuple. We can solve this by recursively calling
genStub each time generating one new argument and pushing the call to toMono onto
the accumulator list. When we reach the last element of the type list we reached the
return type and can put the actual body together. The second pattern generates a
lambda expression with one parameter and its body being generate with a recursive
call to genStub. This generates a chain of lambda expressions. The accumulator list is
used to store the parts that make up the n-tuple. Thus each entry corresponds to one
element in the tuple. The �rst pattern matches, if only one element in the type list is
left. This means that we reached the type of the return value and we can put everything
together. We generate a do-statement with three lines. Firstly we use query to send
the request and receive the result. As shown earlier (Listing 3.13) query expects a tuple

15

3. Implementation

with the arguments as its third parameter. Since we already have all the tuples entries
accumulated as list (acc), we can directly generate the tuple from that list using the
TupE constructor, which takes a list of elements as argument. In our case we use the
reversed list, since our protocol speci�ed that the tuple's i-th element correlates to the
functions i-th argument and our list list has the reversed order. Secondly we de-serialize
the return value with read and lastly we use fromMono before we return the result, this
ensures that if our return type is polymorphic the right type is restored. Listing 3.18
shows the resulting code for a simple add function (also de�ned in that Listing).

add : Int -> Int -> Int

add = (+)

remote_add h

= \ x0

-> \ x1

-> do { p <- query "add" h (toMono x0 :: Int ,

toMono x1 :: Int);

let r = read p :: Int;

return (fromMono r) }

Listing 3.18: remote_add example

3.7. Server framework

The server side has to ful�ll the task of opening a port and listen for incoming function
calls. These the server has to process and return the result to the client. To do this
the server has to map the message it receives to the right function. For this it �rst has
to extract the function name from the message. We than use a simple case of to map
that name to the corresponding function. Since the case of 's matches depend on what
functions we want to use with RFI we have to generate that part with Template Haskell.
To start an RFI server we provide startServer :: Int -> IO (). This function takes a port
number which it should listen on, opens it and then processes any incoming messages.

3.8. Server functions

The core of our server function is a function map of type String -> (String -> IO String)
which maps the function names to a corresponding generated wrapper function. These
wrapper functions are generated lambda expressions which take the serialized argument
tuple de-serialize it and then return the serialized result. Since we allow IO functions to
be used with RFI all other functions also are transformed into an IO function to gain a
consistent type signature.
To generate the wrapper function we �rst have to generate a list of variable names to

de-serialize the argument tuple.

-- list of names for the arguments

arguments :: [Name]

arguments = argumentsFromSig sig 0

16

3. Implementation

-- generate the list from the functions signature

argumentsFromSig :: Type -> Int -> [Name]

argumentsFromSig (AppT (AppT ArrowT _) t) n =

(mkName $ "x" ++ (show n)) : (argumentsFromSig t $ n + 1)

argumentsFromSig _ _ = []

Listing 3.19: generate argument variables

As shown in Listing 3.19 we again use the functions signature to generate the list.
Pattern matching against the signature allows us to count the number of arguments and
generate a list of locally unique Names.

-- generate the type of the tuple

tupleType :: Type

tupleType = tupleType_help (siglist sig) (TupleT (length arguments))

where

tupleType_help [t] acc = acc

tupleType_help (t:ts) acc = tupleType_help ts $ AppT acc t

Listing 3.20: generate the tuple's type

Listing 3.20 shows another important part of generating the server side code. To
correctly de-serialize the argument tuple we have to provide a complete type de�nition of
the tuple. Since polymorphic arguments are all converted toMonoRep before serialization
we have to use the monomorphic type signature of the RFI function. Meaning the type
signature, in which all type variables are replaced by MonoRep. This type signature is
necessary as soon as we have more than one argument, even if the original function is
monomorphic or the original function is polymorphic. To make our life easier we always
generate the type signature, independent of the tuple size and the function type. Siglist
converts a function signature into a list of its arguments' types, but also includes the
return type as the last element, which is why we have to stop the recursion when only
one element is left.

-- create the body of the Match

-- arguments: list of names for the arguments

-- accumulator

matchBody :: [Name] -> Exp -> Exp

matchBody [] acc = (body acc)

matchBody (x:xs) acc = matchBody xs (AppE acc (VarE x))

body :: Exp -> Exp

body x = if isIOFun sig

then DoE [BindS (VarP (mkName "tmp")) x,

NoBindS (AppE (VarE (mkName "return"))

(AppE (VarE (mkName "show"))

(VarE (mkName "tmp"))))]

else (AppE (VarE (mkName "return"))

(AppE (VarE (mkName "show")) x))

Listing 3.21: creating the server function's body

MatchBody and body are the two functions, which generate the actual call to the
original function. First we use matchBody with the list of argument variables and the

17

3. Implementation

function we want to call. It then generates the abstract syntax tree, which applies the
function to the arguments. At last body is used to serialize the result and if necessary
wrap the result into the IO monad.

Match (LitP (StringL match))

(NormalB (LamE [VarP (mkName "x")]

(LetE [ValD (TupP argumentTuple)

(NormalB (SigE (AppE (VarE (mkName "read"))

(VarE (mkName "x")))

tupleType))

[]]

(matchBody arguments (VarE funName)))))

[]

Listing 3.22: generate match

Listing 3.22 is using all this information to generate the match we need for the case
of. The function name is used as match pattern and as body we generate a lambda
expression with one argument. The body of the lambda expression is a simple let, which
is used to de-serialize the arguments and then call the original function.
In Listing 3.23 we show what the server generates for our add example.

"add"

-> \ x

-> let (x0 , x1) = read x :: (Int , Int)

in return (show (add x0 x1))

Listing 3.23: server code for add

18

4. Conclusion

In this chapter we want to discuss our solution, what it can and can not do and compare
it to another approach and look for future improvements.

4.1. Performance

Our approach has several drawbacks related to performance. The �rst being our protocol.
We use string representations for serialization. For most data types this is not an e�cient
method of serialization, but on the other hand it allows for an easier debugging. For all
basic data types the string representation of show is an easily readable format. So we
can debug by reading the messages or even sending our own to the server, for example
with telnet. A second drawback is, that since we somehow have to send the arguments
of the function to the server, we �rst have to serialize them. More importantly to do
that we �rst have to evaluate all arguments. We have the same disadvantage again on
the server side. The client expects the server to return the result of the function. To do
that we have to evaluate the function. This means that with our remote functions we
loose Haskell's lazy evaluation.
Here multiple improvements may be possible. The protocol can be improved by using

another serialization method at the cost of readability. A form of byte representation
comes to mind, an example for that would be the ByteString type from Data.Serialize.
The second problem is more complicated. One could try to make the protocol more
complex and allow the server to send requests back to the client and enable the server
to ask the client for speci�c arguments. In this way, the client would only send which
function it wants to call and then wait for the server to specify which arguments are to be
send. Important for this method would be that the server can make multiple independent
requests per function. Meaning if we have a function like shown in Listing 4.1, the server
could ask for the �rst argument and then after evaluation of the condition it can request
either the second or third argument, depending on which branch is taken.

lazy :: Bool -> Int -> Int -> Int

lazy True a _ = a

lazy _ _ b = b

Listing 4.1: a function that would bene�t from lazy evaluation

The problem with this approach is that not only would we have to extend our protocol,
but also modify the original function, to request the arguments as needed.

19

4. Conclusion

4.2. Usage

A main goal of our solution was to make generating remotely callable functions as simple
as possible. With only one function to call to generate the remote functions and server
function (genRFI), one function to start the server (startServer) and one function to
establish a connection from the client (startRFI) our statically generated function set
is very small. To use RFI functions from the client the user simply has to use the
corresponding remote function with an additional RFIHandle argument. In this way the
user does not need to specify anything about the network layers or data serialization,
which enables an easy usage.

4.3. Code Base

Normally one would want to generate two modules, one which contains all functions
to use as server and one for all client functions. Contrary to that our approach only
generates a single module, because of the usage of Template Haskell (section 2.1). This
means that the same module can be used both to program a server and a client. So if
we want to use RFI to create an API for a server application we also have to publish the
server functions.

4.4. Polymorphic Functions

To make some polymorphic functions usable with RFI we de�ned a new type MonoRep
and used this type to convert all polymorphic functions into monomorphic ones (sec-
tion 3.4). This enables us to use all polymorphic functions as long as they are not based
on type constraints or are higher-order-functions. In both cases the problem is, that we
have no way of de-serializing the data on the server. We have no possibility to de-serialize
types, from which we only know they implement a speci�c type class. A classic example
would be the type class Show. We have instances for Show for both String and Int, but
they are two completely di�erent types and we can not serialize and de-serialize them
in the exact same way. Since we want to provide a polymorphic remote function, we
do not know anything about the polymorphic type variables at the time of compilation.
The same issue we have with higher-order-functions. We are not able to serialize and
de-serialize an arbitrary function, to use it on the server.
In 2011 Je� Epstein, Andrew P. Black and Simon Peyton-Jones presented a paper

("Towards Haskell in the Cloud") [3] in which they also have to solve similar problems.
Their main focus is on providing a message passing communication model. In their
model they found a way to serialize closures over the network. The main drawback of
their solution is that to pass messages with Cloud Haskell you have to use Channels.
Each channel can only pass along a single data type and the type that is passed has to
be speci�ed at compile time. This makes a usage of their solution for our framework im-
possible since we do not know the type at compile time and want to provide polymorphic
remote functions. Our approach enables us to provide that interface but at the cost of not

20

4. Conclusion

allowing constructs like closures. And since we do only loose the exact type information
on the server side we can work with arbitrary functions meeting our restrictions. Simple
examples for this are length :: [a] -> Integer and append :: [a] -> [a] -> [a], which can
be used with RFI, since no data is lost during serialization.
The support for polymorphic functions is another item, that might be further improved.

For example one could try to support higher-order-functions, by allowing callbacks to the
client. In this approach the client would not serialize the function argument, but send
some kind of callback identi�er. The server then has to ask the client to calculate that
function when it is needed. For an example let us take a look at the map :: (a -> b)
-> [a] -> [b] function. We would still transform it into a monomorphic function on the
server side, but also replace the function argument with a placeholder (let us call that
type Function). The resulting signature for the server function would be Function ->
[MonoRep] -> [MonoRep] and from the server perspective Function represents a function
of the type MonoRep -> MonoRep. The server then would have to use the client to
calculate the result of Function for each element of the list. Since the client does know
the original type it can convert the MonoRep argument back to its original type, call
the function and return the MonoRep representation of the result to the server. This
approach would require bidirectional communication between client and server depending
on the function could dramatically increase the network tra�c. In our map example the
server would have to make n callbacks for a list of n elements. It would also be necessary to
modify the original function to make those callbacks. On the other hand it would provide
higher-order-function support and would not make the usage of RFI more complicated.

4.5. Conclusion

All in all we accomplished the goal of creating an easy to use library for remote functions.
The main drawbacks are, that higher-order-functions and lazy evaluation are not possible
with Remote Function Invocation. But on the other hand we can retain polymorphic
functions, as polymorphic and by means of generating the serialization functions sec-
tion 3.4 automatically at compile time for algebraic and basic data types, polymorphic
RFI functions work with a variety of data types out of the box.

21

A. Installation and usage

A.1. Installation

The installation of our RFI module can be done with Cabal 1. The following instructions
assume that you have a Linux based system and the source archive. For instruction
on other Operating Systems, take a look at the cabal documentation 2. To install the
package you �rst have to unpack the source code. Under Linux this can be done with:

tar -xvf RFI -version.tar.bz2

Now you have to change into the package directory.

cd RFI -version

After that three more commands are necessary the third has to be executed as root if
you want to make the package available for all users. One way to do this is prepend the
sudo command to the line.

cabal configure

cabal build

cabal install

A.2. Testing the installation

The RFI package includes three example applications. A server and the corresponding
client and a simple chat application, which is both server and client. These can also be
used to test the RFI installation. Simply change into the exampels/ directory, which
contains the applications. It also includes a make�le. So a simple

make

should build all three applications. If you run these, make sure you start the servers
before the client. Especially when you start the chat, you have to switch to a second
instance after specifying the server port or use the same port number twice and so connect
to the same instance.

A.3. Usage

To use RFI you have to create one module which contains all RFI functions. This module
you can then in turn use to write your client and server applications. Since we need a

1http://www.haskell.org/cabal/
2http://www.haskell.org/haskellwiki/Cabal/How_to_install_a_Cabal_package

22

A. Installation and usage

lot of compiler �ags to generate the RFI functions it is recommended that you copy
r�_template.hs from the packages base directory to your working directory and use it as
a starting point. It already contains all necessary compiler �ags and includes the RFI
module. You basically have to do only three things to generate the RFI functions. Set
a module name, de�ne the functions you want to use with RFI and add these functions'
names to the list of genRFI 's argument. You can then compile the module and include
it in your client and server applications. To use your functions with RFI, the server
application has to call startServer with an appropriate port number and the clients have
to establish a connection with startRFI and the host and port number of a running
server as arguments. After that you can use the generated functions. The functions use
the original names, but preceded by remote_. As mentioned before in section 3.1, these
functions take the RFIHandle returned by startRFI as their �rst parameter. If not sure
what to do, take a look at the examples in Appendix B.

23

B. Examples

B.1. Specifying RFI functions

{-# LANGUAGE

MultiParamTypeClasses

, FlexibleInstances

, OverlappingInstances

, FlexibleContexts

, NoMonomorphismRestriction

#-}

module Test where

import RFI

add :: Int -> Int -> Int

add = (+)

echo :: String -> String

echo = id

inc :: Int -> Int

inc = (+1)

fac :: Int -> Int

fac n | n == 0 = 1

| otherwise = n * fac (n - 1)

put :: String -> IO ()

put = putStrLn

data Test a = Test a a | Test2 a

deriving (Show , Read)

f_test :: Test a -> a

f_test (Test _ a) = a

f_test (Test2 a) = a

f_either :: Either Int a -> Either a Int

f_either (Left n) = Right (n+1)

f_either (Right x) = Left x

f_maybe :: Maybe a -> Maybe a

f_maybe = id

lengthPlusX :: [a] -> Int -> Int

lengthPlusX z x = length z + x

24

B. Examples

f_map :: [a] -> (a -> b) -> [b]

f_map = \x y -> map y x

f_tuple :: (a, b) -> a

f_tuple = fst

-- generate RFI - Code

genRFI ["f_test", "echo", "inc", "add",

"fac", "put", "lengthPlusX",

"f_maybe", "f_either", "f_tuple"]

Listing B.1: RFI functions (examples/usage.hs)

B.2. Starting a server

import Test

main = do startServer 55556

Listing B.2: server (examples/server.hs)

B.3. Using remote functions

import Test

import Monomorph

main = do

handle <- startRFI "localhost" 55556

remote_echo handle "test echo" >>= putStrLn

remote_inc handle (2 :: Int) >>= putStrLn . show

remote_add handle (3 :: Int) (2 :: Int) >>= putStrLn . show

remote_fac handle (3 :: Int) >>= putStrLn . show

remote_put handle "test print"

remote_f_either handle (Left 2 :: Either Int String)

>>= putStrLn . show

remote_f_either handle (Right "Test" :: Either Int String)

>>= putStrLn . show

remote_lengthPlusX handle ([1, 2, 3] :: [Int]) (2 :: Int)

>>= putStrLn . show

remote_f_maybe handle (Just "test") >>= putStrLn . show

remote_f_test handle (Test (2 :: Int) (3 :: Int))

25

B. Examples

>>= putStrLn . show

remote_f_tuple handle (2 :: Int , 3 :: Float) >>= putStrLn . show

Listing B.3: client (examples/client.hs)

B.4. A simple chat

import Test

import Control.Concurrent

main = do

putStrLn "port number (incoming): "

tmp <- getLine

forkIO $ startServer (read tmp)

putStrLn "port number (outgoing): "

tmp <- getLine

handle <- startRFI "localhost" (read tmp)

clientloop handle

where

clientloop handle = do

msg <- getLine

remote_put handle msg

clientloop handle

Listing B.4: simple chat application (examples/chat.hs)

26

Bibliography

[1] Epstein, J.; Black, A. P.; Peyton-Jones, S.: Towards Haskell in the Cloud, 2011

[2] O'Sullivan, B.; Stewart, D.; Goerzen, J.: Real World Haskell, O'Reilly Media,
15.05.2009

[3] Cloud Haskell, http://www.haskell.org/haskellwiki/Cloud_Haskell, 24.09.2013

[4] Language.Haskell.TH, http://hackage.haskell.org/packages/archive/template-
haskell/2.8.0.0/doc/html/Language-Haskell-TH.html, 24.09.2013

[5] Template Haskell,
http://www.haskell.org/haskellwiki/Template_Haskell, 24.09.2013

[6] Multi-parameter type class,
http://www.haskell.org/haskellwiki/Multi-parameter_type_class, 24.09.2013

[7] Java Remote Method Invocation API,
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/index.html,
24.09.2013

[8] Java RMI Tutorial, http://www.eg.bucknell.edu/ cs379/DistributedSystems/rmi_tut.html,
24.09.2013

[9] The Java Tutorials, Trail: RMI, http://docs.oracle.com/javase/tutorial/rmi/index.html,
24.09.2013

27

	Introduction
	Preliminaries
	Template Haskell

	Implementation
	Basic concept
	Protocol
	Monomorphic functions
	Polymorphic functions
	Client framework
	Generating remote functions
	Stub signature
	Stub generation

	Server framework
	Server functions

	Conclusion
	Performance
	Usage
	Code Base
	Polymorphic Functions
	Conclusion

	Installation and usage
	Installation
	Testing the installation
	Usage

	Examples
	Specifying RFI functions
	Starting a server
	Using remote functions
	A simple chat

	Bibliography

